
VMRC SDK Programming Guide
vSphere 6.0

vCloud Director 6.0

This document supports the version of each product listed and
supports all subsequent versions until the document is replaced
by a new edition. To check for more recent editions of this
document, see http://www.vmware.com/support/pubs.

EN-001432-00

http://www.vmware.com/support/pubs

VMware, Inc.
3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

VMRC SDK Programming Guide

You can find the most up-to-date technical documentation on the VMware Web site at:

http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2012–2015 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents
http://www.vmware.com/go/patents

VMware, Inc. 3

Contents

About This Book 5

1 Remote Console Access with VMRC 7
Overview of VMRC Architecture 7
Requirements for Using the VMRC Browser Plug-In 8
VMRC Workflow 8

2 Setting Up the VMRC Browser Plug-In 9
Downloading the VMRC SDK 9
Using VMRC Property Value Constants 9
Loading the VMRC Browser Plug-In 10

Windows Plug-in 10
Linux 32-Bit and 64-Bit 10

Setting Handlers for VMRC Events 11
Setting Handlers in Internet Explorer 11
Setting Handlers in Firefox or Chrome 11
Abstracting Event Handler Setup 11

Accessing VMRC Log Files 11
Windows Log File Locations 12
Linux Log File Locations 12

3 Using the VMRC Plug-In and the API 13
Starting the VMRC Browser Plug-In 13

Verifying the VMRC Browser Plug-In Version 13
Initializing the VMRC Browser Plug-In 14

Connecting to a Remote Host and Virtual Machine 16
Connection Authentication 17
Virtual Machine Identifier 17

Calling VMRC API Methods on a Virtual Machine 17
General-Purpose API Methods 18
MKS Mode API Methods 18
Devices Mode API Methods 20

Disconnecting and Shutting Down the VMRC Browser Plug-In 24
Disconnecting an Active Connection 24
Shutting down the VMRC Browser Plug-In 24

4 Handling VMRC Events 25
VMRC Event Parameters 25
List of VMRC Events 25

General-Purpose Events 25
MKS Mode Events 26
Devices Mode Events 27

Index 29

VMRC SDK Programming Guide

4 VMware, Inc.

VMware, Inc. 5

The VMRC SDK Programming Guide provides information about developing applications by using the VMware
Remote Console software development kit that is included with vSphere and vCloud Director.

VMware provides many different APIs and SDKs for various applications and goals. This book provides
information about using the VMware Remote Console API for developers that are interested in creating web
applications that can remotely access virtual machine console and device functions.

To view the current version of this book as well as all VMware API and SDK documentation, go to
http://www.vmware.com/support/pubs/sdk_pubs.html.

Revision History
This book is revised with each release of the product or when necessary. A revised version can contain minor
or major changes. Table 1 summarizes the significant changes in each version of this book.

Intended Audience
This book is intended for anyone who needs to develop applications using the VMRC SDK. Typically this
includes software developers who are creating Web applications using JavaScript, and who are targeting
virtual machine remote-console functions in vSphere and vCloud Director.

VMware Technical Publications Glossary
VMware Technical Publications provides a glossary of terms that might be unfamiliar to you. For definitions
of terms as they are used in VMware technical documentation go to http://www.vmware.com/support/pubs.

Document Feedback
VMware welcomes your suggestions for improving our documentation. Send your feedback to
docfeedback@vmware.com.

About This Book

Table 1. Revision History

Revision Date Description

12 September 2014 Updated manual for vSphere 6.0 RC. Noted discontinuation of NPAPI in Chrome.

14 February 2014 Added index in December 2013. Later updated OS and browser compatibility information.

19 September 2013 Release of VMRC SDK for vSphere 5.5 and vCloud Director 5.5. Last revised 30 August.

10 September 2012 Initial release of VMRC SDK for vSphere 5.1 and vCloud Director 5.1.

12 October 2012 Documented differences in using getVirtualDevices() and getPhysicalClientDevices() when using
VMRC with the Internet Explorer browser.

http://www.vmware.com/support/pubs/sdk_pubs.html
http://www.vmware.com/support/pubs
mailto:docfeedback@vmware.com
mailto:docfeedback@vmware.com

VMware, Inc. 6

VMware, Inc. 7

1

This chapter contains the following topics:

 “Overview of VMRC Architecture” on page 7

 “Requirements for Using the VMRC Browser Plug-In” on page 8

 “VMRC Workflow” on page 8

With vSphere and vCloud Director, you can create Web-based applications that remotely access virtual
machines and perform console and device operations. Both vSphere and vCloud Director incorporate the
VMware Remote Console browser plug-in, which can be loaded in supported Web browsers. Applications
running in the browser can use the VMRC browser plug-in to access virtual machine console functions
through a JavaScript API. With applications that use the VMRC browser plug-in and VMRC API, users can
remotely interact with virtual machines from any supported operating system and Web browser.

Overview of VMRC Architecture
To use VMRC, a client system uses a Web browser-based application to load the VMRC browser plug-in. The
Web application can then use the VMRC JavaScript API to issue console and device commands by calling the
API methods. When used with vSphere, the target virtual machine or vCenter Server acts as the server side of
the client-server relationship. Figure 1-1 shows the VMRC architecture when used with vSphere.

Your Web application can use the VMRC API methods to connect to a virtual machine and perform remote
operations. The VMRC API contains methods for console commands, such as changing the virtual machine’s
screen mode or sending a Control-Alt-Delete key sequence to the virtual machine. The VMRC API also
contains methods for connecting physical devices on the client to virtual machines.

Figure 1-1. VMRC Architecture with vSphere

When used with vCloud Director, the client communicates with the target virtual machine through a vCloud
Director console proxy. Figure 1-2 shows the VMRC architecture when used with vCloud Director.

Remote Console Access with VMRC 1

VMware
infrastructure

(VC, ESX)

Web application
(model)

Web application
(view)

Web browser

VMRC Native
Application

VMRC
plug-in

Application serverEnd user/client

Target VM

Target VM

Target VM

VMRC SDK Programming Guide

8 VMware, Inc.

Figure 1-2. VMRC Architecture with vCloud Director

The VMRC API contains callback signals that are sent by the browser plug-in when there are changes to the
virtual machine’s state. Your Web application can handle these callback signals to respond to events on the
virtual machine. Most VMRC callback signals are closely associated with VMRC API methods and serve as
feedback when your web application calls a method. For example, a successful call to the connect() API
method causes the VMRC browser plug-in to generate an onConnectionStateChange event, while a call to
the setFullscreen() method results in an onFullscreenChange event.

Requirements for Using the VMRC Browser Plug-In
To use VMRC, your Web application must be able to load the VMRC browser plug-in. The VMRC browser
plug-in is supported for use with Microsoft Windows XP or later, and the Linux operating system. The VMRC
browser plug-in cannot be easily installed and is not supported with Mac OS X.

VMRC is supported by all vSphere and ESXi host configurations, and by all vCloud Director configurations.
Your Web application must be written in JavaScript to make use of the VMRC API.

The Windows version of the VMRC browser plug-in is available only as a 32-bit application. The Linux version
of the VMRC browser plug-in is available as a 32-bit or a 64-bit application. The VMRC browser plug-in for
vSphere and vCloud Director was originally tested with the following web browsers.

 Microsoft Internet Explorer version 7 or later

 Mozilla Firefox version 9 or later

The following browser is supported when using VMRC with vSphere but not with vCloud Director.

 Google Chrome version 16 or later

VMRC currently calls the Netscape Plug-in API (NPAPI), which will eventually be removed from Chrome.

VMRC Workflow
To use VMRC, the VMRC browser plug-in must be installed on the client system. A Web application using
VMRC typically must perform the following actions.

1 Load the VMRC browser plug-in using the appropriate JavaScript call and constant value.

2 Set JavaScript event handlers to respond to VMRC callback signals.

3 Start the VMRC plug-in using the startup() API method.

4 Use the VMRC API connect() method to connect to a target virtual machine.

5 Use the VMRC API methods to send commands to the target virtual machine.

6 Use the VMRC API disconnect() method to disconnect from the target virtual machine.

7 Shut down the VMRC browser plug-in using the shutdown() API method.

console proxy target VM

client system vSphere-managed virtual
infrastructurevCloud Director

Web browser

Web page
(uses JavaScript)

VMRC
plug-in

VMRC
native

application

main application
(UI and REST API)

(l.e. 1 + VCs and 1 + ESXs)

VMware, Inc. 9

2

This chapter contains the following topics:

 “Downloading the VMRC SDK” on page 9

 “Using VMRC Property Value Constants” on page 9

 “Loading the VMRC Browser Plug-In” on page 10

 “Setting Handlers for VMRC Events” on page 11

 “Accessing VMRC Log Files” on page 11

Downloading the VMRC SDK
The VMware Remote Console (VMRC) software development kit is available on VMware Developer Center.
You can log in using your My VMware credentials. Once there, click Home > SDK > VMRC SDK > Download.
The SDK is a large ZIP file. Its installers directory contains Linux 32-bit and 64-bit bundle files, and a
Windows executable, as discussed in “Windows Plug-in” on page 10.

The Web application you create with VMRC may install the remote console plug-in on first use. For example,
the first time a browser connects to the vSphere Web Client and the user clicks Launch Console, the browser
asks to install the plug-in.

To use VMRC, your Web application must first load the VMRC browser plug-in, then set up the property value
constants and callback handler methods required by the VMRC API. After your Web application performs
these initial steps, it can use the VMRC API methods to connect to a virtual machine and access the console
and device functions.

Using VMRC Property Value Constants
To use the VMRC API with the VMRC browser plug-in, you must set up the necessary property value
constants that the API methods require. In your web Application JavaScript code, you must use these property
value constants when invoking VMRC API methods or handling callback signals.

The syntax of the property value constants vary depending on which web browser you use with VMRC
browser plug-in.

In Internet Explorer, the property value constants are exposed as dictionaries corresponding to each property
value class name. For example, for the VMRC_ConnectionState variable, a value of VMRC_CS_CONNECTED is
represented by the following JavaScript code in Internet Explorer:

vmrc.VMRC_ConnectionState(“VMRC_CS_CONNECTED”)

In Firefox or Chrome, the property value constants directly correspond to the property name. For the
VMRC_ConnectionState variable, a value of VMRC_CS_CONNECTED is represented by the following JavaScript
code in Firefox or Chrome:

vmrc.VMRC_ConnectionState.VMRC_CS_CONNECTED

Setting Up the VMRC Browser Plug-In 2

VMRC SDK Programming Guide

10 VMware, Inc.

The VMRC SDK contains example JavaScript code that abstracts these differences in handling property value
constants. When developing your Web application, you can use the example code to ensure that the VMRC
property value constants are accessed in a uniform manner, regardless of which Web browser the user runs.

Loading the VMRC Browser Plug-In
Your Web application must load the VMRC browser plug-in by creating an object instance of the plug-in. If
you create this object instance for Internet Explorer browsers, you must set the instance class ID to a value
specific to the version of the VMRC API you want to use. If you create the object instance in the Firefox or
Chrome browsers, you must likewise set the object instance type attribute to a specific value for your VMRC
version. Example 2-1 shows how to create an object instance using HTML, and how to set the CLSID or type
values. The object instance is assigned the ID value vmrc.

Example 2-1. Creating an Object Instance of the VMRC Browser Plug-In

<!--[if IE]>
<object id=”vmrc” classid=”CLSID:4AEA1010-0A0C-405E-9B74-767FC8A998CB”

style=”width: 100%; height: 100%;”></object>
<![endif] -->
<!--[if !IE]><!-->
<object id=”vmrc” type=”application/x-vmware-remote-console-2012"

style=”width: 100%; height: 100%;”></object>
<!--<![endif]-->

The code in Example 2-1 can be included anywhere in the HTML code that makes up your Web application.
Subsequent VMRC API examples in this document refer to the plug-in object instance using the value vmrc as
set in the example.

The values of the classid and type attributes correspond to specific versions of the VMRC API. For the
vSphere 5.1 and vCloud Director 5.1 releases, the classid must be set to the following value.

CLSID:4AEA1010-0A0C-405E-9B74-767FC8A998CB

In vSphere 5.1 and vCloud Director 5.1, the type attribute must be set to the following value.

application/x-vmware-remote-console-2012

You can verify the VMRC browser plug-in version prior to starting the VMRC plug-in by using the
getVersion() API method. See Chapter 3, “Using the VMRC Plug-In and the API,” on page 13.

Windows Plug-in

In the SDK, the vmware-vmrc-win32-x86.exe installer applies to Windows systems.

VMware provides only the 32-bit binary VMRC plug-in, which also runs on 64-bit Windows.

Linux 32-Bit and 64-Bit

The vmware-VMRC.i386.bundle installer applies to 32-bit Linux, and the vmware-VMRC.x86_64.bundle
installer applies to 64-bit Linux.

You must be logged in as root or have superuser privileges to run the bundle installers. The plug-in will be
installed in /usr/lib/mozilla/plugins as shown below.

ls -l /usr/lib/mozilla/plugins
...
lrwxrwxrwx 1 root root 62 Apr 8 14:58 npVMwareClientSupportPlugin-5-5-0.so ->

/usr/lib/vmware-cip/5.5.0/npVMwareClientSupportPlugin-5-5-0.so
lrwxrwxrwx 1 root root 59 Apr 8 14:58 np-vmware-vmrc-5.5.0-1071230.so ->

/usr/lib/vmware-vmrc/5.5/np-vmware-vmrc-5.5.0-1071230-64.so

If you run 32-bit Firefox on 64-bit Linux, install just the i386 bundle.

If you run 64-bit Firefox on 64-bit Linux, The plug-in directory might be /usr/lib64/mozilla/plugins
instead of /usr/lib/mozilla/plugins. If the plug-in directory does not exist, you must create it.

VMware, Inc. 11

Chapter 2 Setting Up the VMRC Browser Plug-In

If you are not certain whether you have 32-bit or 64-bit Firefox installed, first try /usr/lib, and if that does
not work, try /usr/lib64. If you compiled your own copy of Firefox, similar advice applies. If the compiled
Firefox binary is under your home directory as firefox/firefox, the plug-in should be installed in the
firefox/plugins subdirectory.

Setting Handlers for VMRC Events
When there is a change in the state of a VMRC session, the VMRC browser plug-in generates events using the
VMRC API. Events generated include changes in connection state, changes in screen size on the target virtual
machine, or events generated in response to messages from the VMRC plug-in. See Chapter 4, “Handling
VMRC Events,” on page 25.

To use the VMRC browser plug-in, your Web application must set up handlers for the VMRC events. You must
bind the events to JavaScript handler methods in your Web application. The VMRC API provides different
binding mechanisms for each supported Web browser.

Setting Handlers in Internet Explorer

In Internet Explorer, handler methods are bound using the attachEvent() method. You set the handler
method by calling attachEvent() and passing as parameters the event name as a string, and a pointer to the
JavaScript handler method.

For example, to set a handler method for the onConnectionStateChange event, you must call
attachEvent() as follows:

vmrc.attachEvent(“onConnectionStateChange”, onConnectionStateChangeHandler);

The first parameter to attachEvent() is the event name that is defined in the VMRC API. The second
parameter is the JavaScript handler method that you define.

Setting Handlers in Firefox or Chrome

In Firefox and Chrome, each event corresponds to a property of the VMRC plug-in object instance. You bind
a handler method to a VMRC event by setting the corresponding event property value to the handler method.

For example, to set a handler method for the onConnectionStateChange event, you must set the VMRC
object instance’s onConnectionStateChange property as follows:

vmrc[“onConnectionStateChange”] = onConnectionStateChangeHandler;

Abstracting Event Handler Setup

The VMRC SDK contains sample code that shows how to abstract the setting of event handlers into a single
function that can be used with all supported browsers. See the attachEventHandler() method in the sample
file vmrc-embed-example.js in the VMRC SDK binaries.

Accessing VMRC Log Files
Some components in the VMRC SDK automatically produce log files. You can use these log files for tracing
VMRC behavior for debugging and optimization. When reporting bugs or other issues with VMRC, as a best
practice, include the locations of the directories containing the relevant log files.

The VMRC components automatically generate log files.

 VMRC Application Log. The application log is a log file produced by the client VMRC binary that
processes VMRC API calls.

 VMRC Plug-In Log. The plug-in log file produced by the VMRC browser plug-in library that client Web
applications use to call API methods.

 Remote MKS Log. The mouse keyboard screen (MKS) log is produced by an MKS binary on the local client
machine. The MKS binary provides display data and metadata used to show the target virtual machine’s
console.

VMRC SDK Programming Guide

12 VMware, Inc.

 USB Arbitrator Log. The USB arbitrator log is produced by the privileged USB service that provides the
data and functionality used to connect local client USB devices to remote virtual machines.

Windows Log File Locations

Table 2-1 shows the location of each log file on the Windows operating system.

Linux Log File Locations

The VMRC browser plug-in does not generate a log file on the Linux operating system. You can access plug-in
log information by running your Web browser from the command line. The VMRC browser plug-in generates
logging information on stdout.

You can find logs generated by the VMRC native application process, as well as a Remote MKS process log, at
the following location.

/tmp/vmware-$USER/

You can find the USB arbitrator log file at the following location.

/tmp/vmware-root/

Table 2-1. Windows Log File Locations

Log File Location

VMRC Application Log %TEMP%\vmware-%USERNAME%\

VMRC Plug-In Log %TEMP%\vmrc-plugin\

Remote MKS Log %TEMP%\vmware-%USERNAME%\

USB Arbitrator Log %SYSTEMROOT%\Temp\vmware-SYSTEM\

VMware, Inc. 13

3

This chapter contains the following topics:

 “Starting the VMRC Browser Plug-In” on page 13

 “Connecting to a Remote Host and Virtual Machine” on page 16

 “Calling VMRC API Methods on a Virtual Machine” on page 17

 “Disconnecting and Shutting Down the VMRC Browser Plug-In” on page 24

After your Web application has loaded and otherwise prepared the VMRC browser plug-in, you can use the
VMRC API to connect to a virtual machine and perform operations. Depending on which mode you choose
when you start the VMRC browser plug-in process, you can use VMRC API methods to interact with the
virtual machine’s user interface (mouse, keyboard, and screen) or the virtual machine’s devices. The VMRC
API also contains general-purpose methods that you can use regardless of the VMRC browser plug-in mode.

To use the VMRC API, your Web application must typically perform the following steps.

1 Initialize and start the VMRC plug-in.

2 Connect to the remote host of the target virtual machine.

3 Call methods that correspond to the desired console or device commands on the target virtual machine.

4 Disconnect from the remote host.

5 Shut down the VMRC plug-in.

The VMRC API methods generate exceptions if a failure or an error occurs when you call a method. It is a best
practice to use try and catch blocks in your web application code to handle any exceptions generated by the
VMRC API methods. As many VMRC API methods do not return a value, handling the exceptions is the only
way to handle errors and failures.

Starting the VMRC Browser Plug-In
Before you call any other API methods, your Web application must first initialize the VMRC browser plug-in.
You can also use VMRC API methods to verify the VMRC browser plug-in version before starting the plug-in.

Verifying the VMRC Browser Plug-In Version

You can use the getVersion() API method to obtain the specific version of the VMRC browser plug-in and
VMRC SDK that is installed on the local client system. You can call getVersion() at any time after loading
the VMRC plug-in, even before you start the plug-in.

The getVersion() method is present in every version of the VMRC API. For detailed information on calling
getVersion(), see “General-Purpose API Methods” on page 18.

Using the VMRC Plug-In and the API 3

VMRC SDK Programming Guide

14 VMware, Inc.

The specific VMRC API version that your Web application uses depends on the CLSID or MIME type that your
application supplied when loading the VMRC browser plug-in. See “Loading the VMRC Browser Plug-In” on
page 10.

Initializing the VMRC Browser Plug-In

To initialize the VMRC browser plug-in, you must use call the following API methods in sequence.

1 Use the isReadyToStart() API method to determine whether the VMRC browser plug-in has been
successfully loaded and is ready to be started.

2 Use the startup() API method to start the processes in the VMRC browser plug-in.

Using isReadyToStart()

The isReadyToStart() method takes no parameters and returns a boolean value. A return value of true
indicates that the VMRC browser plug-in has been loaded and is ready to start. You may call startup() once
the isReadyToStart() method returns a value of true.

NOTE The VMRC browser plug-in does not generate an event when the plug-in is ready to start. You must
poll the return value of the isReadyToStart() method to determine whether the VMRC browser plug-in has
loaded and can be started.

An example call to isReadyToStart() might appear as follows:

var ret = vmrc.isReadyToStart();

Using the startup() Method

You must use the startup() API method to start the processes in the VMRC browser plug-in. When you call
the startup() method, you also set the modes in which the VMRC browser plug-in can operate. The available
modes are Mouse-Keyboard-Screen (MKS) mode and Devices mode.

You can choose to start the VMRC browser plug-in with one or both of the available mode settings. The mode
parameter to the startup() API method accepts a mask of values. You can include one or both mode settings
in the value that you pass for the mode parameter by using the bitwise or (|) operator.

MKS Mode

When you start the VMRC browser plug-in using MKS mode, the screen contents of the target virtual machine
are displayed in the local browser window. The user can interact with the input to the target virtual machine,
such as the mouse and keyboard. The VMRC API contains methods specific to MKS mode, where your Web
application can interact with the screen, send key sequences, or grab the virtual machine input. See “MKS
Mode API Methods” on page 18.

You start the VMRC browser plug-in using MKS mode by calling the startup() method and including the
property value constant VMRC_Mode.VMRC_MKS in the mode parameter.

Devices Mode

When you start the VMRC browser plug-in using Devices mode, you can use VMRC to manage virtual
devices. You can connect virtual devices on the target virtual machine to physical devices on the local system.
The VMRC API contains methods specific to Devices mode, where your Web application can connect physical
client devices to virtual devices, and allow the target virtual machine to access physical devices on the local
system that is running your Web application. See “Devices Mode API Methods” on page 20.

You start the VMRC browser plug-in using Devices mode by calling the startup() method and including the
property value constant VMRC_Mode.VMRC_DEVICES in the mode parameter.

VMware, Inc. 15

Chapter 3 Using the VMRC Plug-In and the API

The startup() method returns a string value, which is implementation-specific and opaque to the client.

Advanced Configuration Flags

Table 3-2 shows the available advanced configuration flags that you can use in the startup() method’s
advancedconfig parameter. To use a flag, you must include the string “{flag}=true” in the
advancedconfig parameter, where {flag} is your flag of choice. You can include multiple flags by separating
each flag and value with a semicolon.

When using VMRC with vCloud Director, you must include advanced configuration flags usebrowserproxy
and tunnelmks, with the values set to true.

Example Call

An example call to startup() in the Firefox browser might appear as follows:

var ret = vmrc.startup(vmrc.VMRC_Mode.VMRC_MKS, vmrc.VMRC_MessageMode.VMRC_EVENT_MESSAGES,
“usebrowserproxy=true;tunnelmks=true”);

Table 3-1. Parameter List for VMRC startup() Method

Parameter Name Type Description/Notes

mode VMRC_Mode property value constant; one or
both of the values VMRC_Mode.VMRC_MKS and
VMRC_Mode.VMRC_DEVICES (both can be
conjoined using the | operator)

The mode parameter is specified at startup,
and determines the operational mode of the
VMRC plug-in instance for the lifetime of its
connection. The plug-in can operate in the
following modes.
VMRC_Mode.VMRC_MKS: In MKS mode,
guest screen contents are displayed and the
user can interact with the guest.
VMRC_Mode.VMRC_DEVICES: In Devices
mode, the user can manage remote device
backings and their mappings to virtual
machine devices.

msgmode VMRC_MessageMode property value constant;
VMRC_MessageMode.VMRC_EVENT_MESSAGES,
VMRC_MessageMode.VMRC_DIALOG_MESSAGE
S, VMRC_MessageMode.VMRC_NO_MESSAGES

The msgmode parameter is specified at startup,
and determines by which mode messages are
delivered from the plug-in to the containing
document element in your Web application.
The
VMRC_MessageMode.VMRC_DIALOG_MESSAGE
and VMRC_MessageMode.VMRC_NO_MESSAGES
values are not supported on the Linux operating
system.

advancedconfig string A string containing advanced configuration
options. Values for this parameter must follow
the format “flag=value”, as in
“usebrowserproxy=true”. See Table 3-2 for
valid configuration flags.

Table 3-2. Advanced Configuration Flags for VMRC startup() Method

Flag Description

usebrowserproxy If true, VMRC connections use the same proxy settings as the Web browser running
the VMRC browser plug-in.

autoanswerquestions If true, end-user questions from the connected Virtual Machine are automatically
answered by VMRC using the default choice that the Virtual Machine designates. You
can use the autoanswerquestions flag for simple or devices-only clients that do not
require end-user interaction.

cacheconnections If true, VMRC preserves device connections to a given Virtual Machine even after
VMRC disconnects from that Virtual Machine using the disconnect() method. You
can use the cacheconnections flag for advanced clients that provide client device
functionality for multiple Virtual Machines with a single VMRC instance.

tunnelmks If true, VMRC MKS console traffic is tunneled over HTTPS.

VMRC SDK Programming Guide

16 VMware, Inc.

Connecting to a Remote Host and Virtual Machine
After your Web application has initialized the VMRC browser plug-in, you can use the connect() method to
connect to a remote host and access a particular virtual machine on that host. To use the connect() method,
you must have the following information.

 The hostname or IP address of the remote host and the thumbprint of the host SSL certificate.

 A form of authentication, which can be either a username and password pair, or a VIM session ticket.

 A form of identification for the target virtual machine, which can be either a virtual machine ID or a
datacenter and vmpath pair.

You pass different parameters to the connect() method depending on how you choose to provide the
required host identification, authentication, and virtual machine identification. Table 3-3 shows the
parameters for the connect() method.

The connect() method does not return a value. If the connection is successful, the VMRC browser plug-in
generates an onConnectionStateChange event. See Chapter 4, “Handling VMRC Events,” on page 25.

NOTE When using VMRC with vCloud Director, only the host, ticket, and vmid parameters are supported
when calling connect(). You must pass false for the allowSSLErrors parameter, and empty strings (““) for
all other parameters in connect().

The following is an example of how to call connect() when using VMRC with vCloud Director.

connect(hostname, ““, false, ticket, ““, ““, vmid, ““, ““);

Table 3-3. Parameter List for VMRC connect() Method

Parameter Name Type Description/Notes

host string Hostname or IP address of the remote host running the target virtual machine.

sslThumbprint string Expected thumbprint of the remote host’s SSL certificate. You must provide the
SSL thumbprint if you authenticate the connection by using a username and
password pair.

allowSSLErrors boolean Boolean value that determines whether or not the host SSL certificate validation
checker allows connections that contain validation errors. You must provide a
value in the sslThumpbrint parameter if you set the allowSSLErrors parameter
to true.

ticket string VIM session ticket, used to authenticate with the remote host. You obtain the VIM
session ticket by using the VIM call acquireCloneTicket() on an active VIM
session.
If you use a ticket to authenticate, you must not pass a value for the username or
password parameters. The sslThumbprint and allowSSLerrors parameters are
optional if you authenticate using the ticket.

username string Username to authenticate with the remote host. If you pass a username and
password pair to authenticate, do not pass a value for the ticket parameter.
You must also provide an SSL thumbprint using the sslThumbprint parameter.

password string Password, used to authenticate with the remote host.

vmid string Virtual machine ID, used to identify the target virtual machine. If you use the vmid
parameter to specify the target virtual machine, you must not pass a value for the
datacenter or vmpath parameters.

datacenter string Datacenter name on which the target virtual machine is stored, used to identify the
target virtual machine. If you use a datacenter and vmpath pair to identify the
target virtual machine, you must not pass a value for the vmid parameter.

vmpath string Full datastore path to the target virtual machine, of the format
[datastore]vmpath(vm.vmx).

VMware, Inc. 17

Chapter 3 Using the VMRC Plug-In and the API

Connection Authentication

You must provide a form of authentication when using the connect() method. This authentication can be a
VIM session ticket, or a username and password pair on the remote host. The authentication methods are
exclusive, meaning that if you use the parameters for one method, such as a session ticket, you must omit the
parameters for the other and pass them as empty strings.

The following is an example of how to call connect(), by using a VIM session ticket as the authentication
method. Note that the username, password, and SSL thumbprint parameters are passed as empty strings.

connect(hostname, ““, false, ticket, ““, ““, vmid, ““, ““);

If you authenticate using a username and password pair, you must provide the SSL thumbprint to the
connect() method in the sslThumbprint parameter.

NOTE Username and password authentication is not supported when using VMRC with vCloud Director.
You must use the ticket parameter when calling connect() in a vCloud Director configuration.

The following is an example of how to call connect(), by using a username and password as the
authentication method. The ticket parameter is passed as an empty string.

connect(hostname, sslThumb, false, ““, uname, pass, vmid, ““, ““);

Virtual Machine Identifier

You must provide a way to identify the target virtual machine when using the connect() method. The virtual
machine can be identified by a virtual machine ID that you obtain from an active VIM session on your Web
application server, or a datacenter name and datastore path to a particular virtual machine.

The two methods of identifying the virtual machine are exclusive. If you use a virtual machine ID, you must
pass that value by using the vmid parameter when calling connect(), and omit any values for datacenter
and vmpath. Conversely, you must omit the vmid if you use values for datacenter and vmpath when calling
connect().

NOTE If you use VMRC with vCloud Director, you must use the virtual machine ID to identify the target
virtual machine when calling connect().

The following example shows how to call connect() by using the virtual machine ID to identify the target
virtual machine.

connect(hostname, ““, false, ticket, ““, ““, vmid, ““, ““);

The following is an example of how to call connect() using the datacenter name and vmpath to identify the
target virtual machine.

connect(hostname, ““, false, ticket, ““, ““, ““, dstore, vmpath);

Calling VMRC API Methods on a Virtual Machine
After you have established a connection to the virtual machine remote host, you can use the VMRC API
methods to interact with the target virtual machine.

Most methods in the VMRC API are associated with a specific mode of the VMRC browser plug-in, such as
MKS mode or Devices mode. Methods associated with a particular operational mode are only available when
the VMRC browser plug-in is started in that mode. For example, the MKS mode method setFullscreen() is
only available if you specified VMRC_Mode.VMRC_MKS when starting up the VMRC browser plug-in. See
“Starting the VMRC Browser Plug-In” on page 13.

Some methods in the VMRC API pertain only to the VMRC browser plug-in and can be used at any time,
including before startup() has been called. These methods generally provide version information on VMRC
and information about the supported APIs.

VMRC SDK Programming Guide

18 VMware, Inc.

General-Purpose API Methods

General-purpose API methods provide information about VMRC and the APIs it supports. These methods can
be called at any time, including before you call the startup() method for the VMRC browser plug-in.

getVersion()

The getVersion() method retrieves the current complete version number of the installed VMRC browser
plug-in.

getConnectionState()

The getConnectionState() method retrieves the current connection state from a VMRC browser plug-in.

MKS Mode API Methods

When you use the VMRC browser plug-in using MKS mode, the VMRC processes provide access to the target
virtual machine console. VMRC connects to the display console of the remote virtual machine and that display
appears in your Web application window. When you use the VMRC browser plug-in using MKS mode, you
can use the following VMRC API methods.

setScreenSize()

The setScreenSize() method commands the VMRC browser plug-in to set the screen resolution of the
currently connected virtual machine.

If the call to setScreenSize() is successful, the VMRC browser plug-in generates an
onScreenSizeChange() event. If the call is unsuccessful, an exception is thrown.

screenWidth()

The screenWidth() method retrieves the screen width, in pixels, of the currently connected virtual machine.

Method getVersion()

Parameters None

Return Value string; contains the full version number for the VMRC plug-in

Example Call var version = vmrc.getVersion();

Method getConnectionState()

Parameters None

Return Value Property Value Constant; valid values are VMRC_CS_CONNECTED or VMRC_CS_DISCONNECTED

Example Call var ret = vmrc.getConnectionState();

Method setScreenSize(width, height)

Parameters width (int); represents the desired screen width of the console, in pixels
height (int); represents the desired screen height of the console, in pixels

Return Value void

Example Call vmrc.setScreenSize(w, h);

Method screenWidth()

Parameters None

Return Value int; represents screen width in pixels

Example Call var sw = vmrc.screenWidth();

VMware, Inc. 19

Chapter 3 Using the VMRC Plug-In and the API

screenHeight()

The screenHeight() method retrieves the screen height, in pixels, of the currently connected virtual
machine.

setFullscreen()

The setFullscreen() method commands the VMRC browser plug-in to enter or exit full-screen mode.

If the call to setFullscreen() is successful, the VMRC browser plug-in generates an
onFullscreenChange() event. If the call is unsuccessful, an exception is thrown.

getFullScreen()

The getFullscreen() method retrieves the current state of the full-screen mode of the VMRC browser
plug-in.

sendCAD()

The sendCAD() method sends a Control-Alt-Delete key sequence to the currently connected virtual machine.

grabInput()

The grabInput() method commands the VMRC browser plug-in to “grab” or capture the current mouse and
keyboard input and send it to the currently connected virtual machine console.

If the call to grabInput() is successful, the VMRC browser plug-in generates an onGrabStateChange()
event. If the call is unsuccessful, an exception is thrown.

Method screenHeight()

Parameters None

Return Value int; represents screen height in pixels

Example Call var sh = vmrc.screenHeight();

Method setFullscreen(fs)

Parameters fs (boolean); set to true to enter full-screen mode, false to exit

Return Value boolean; true for success or false for failure

Example Call var ret = vmrc.setFullscreen(true);

Method getFullscreen()

Parameters None

Return Value boolean; true if full-screen mode is set, false if full-screen mode is not set

Example Call var ret = vmrc.getFullscreen();

Method sendCAD()

Parameters None

Return Value boolean; true for success or false for failure

Example Call var ret = vmrc.sendCAD();

Method grabInput()

Parameters None

Return Value void

Example Call vmrc.grabInput();

VMRC SDK Programming Guide

20 VMware, Inc.

ungrabInput()

The ungrabInput() method commands the VMRC browser plug-in to discontinue capturing the current
mouse and keyboard input.

If the call to ungrabInput() is successful, the VMRC browser plug-in generates an onGrabStateChange()
event. If the call is unsuccessful, an exception is thrown.

setInputRelease()

The setInputRelease() method commands the VMRC browser plug-in to disable all mouse and keyboard
input capture, regardless of the current grab state. You can use this method to lock any input from reaching
the connected VM. For example, if your web application displays a modal dialog, or enters a state in which
you want to prevent any input from reaching the connected VM, you can call setInputRelease() with a
parameter value of true.

You can call setInputRelease() with a parameter value of false to revert the VMRC browser plug-in to
normal input behavior. When you have done so, you can change the input grab state using the grabInput()
and ungrabInput() methods.

Devices Mode API Methods

When you use the VMRC browser plug-in using Devices mode, you can use the physical devices on the local
client machine with the currently connected virtual machine. To use devices in this way, you must connect the
local physical devices to remote virtual device backings by using methods in the VMRC API. The connection
methods differ for USB and non-USB devices.

NOTE Devices mode API methods are not supported for use with USB devices when using VMRC with
vCloud Director.

Obtaining Device Keys and Connecting Devices

To connect non-USB devices, such as a CD-ROM or floppy disk drive, you use the VMRC API to obtain both
a physical and virtual device key. A device key is a unique identifier for a local physical device or a remote
virtual device. You then use the device keys with the connectDevice() VMRC API method to connect the
devices. For USB devices, only the physical device key for the local client device is required.

For file-backed physical devices, such as a file backing for a CD-ROM or floppy device, you must substitute
the full path to the device file for the physical key.

To connect a local physical device to a remote virtual device

1 Use the getPhysicalClientDevices() API method to obtain a list of device keys for the physical
devices on the local machine.

The getPhysicalClientDevices() method returns a physical device key for each device that is
available for remote connection.

Method ungrabInput()

Parameters None

Return Value void

Example Call vmrc.ungrabInput();

Method setInputRelease(release)

Parameters release (boolean); set to true to lock input capture, false to revert to normal
grab/ungrab behavior

Return Value void

Example Call vmrc.setInputRelease(true);

VMware, Inc. 21

Chapter 3 Using the VMRC Plug-In and the API

2 Use the getPhysicalClientDeviceDetails() API method with the desired physical device key to
obtain more information about the specific physical device you want to connect.

3 If you are connecting a non-USB device, use the getVirtualDevices() API method to obtain a list of
device keys for the virtual devices on the currently connected virtual machine.

The getVirtualDevices() method returns a virtual device key for each device that is available for
remote connection. You do not provide a virtual device key when you connect a USB device.

4 If you are connecting a non-USB device, use the getVirtualDeviceDetails() API method with the
appropriate virtual device key to obtain more information about the specific virtual device you want to
connect, including the virtual device’s remote backing type.

5 Use the connectDevice() API method to connect the local physical device to the corresponding remote
virtual device.

To use the connectDevice() method to connect a non-USB device, you must specify the device key for
both the local physical device and remote virtual device, as well as the backing type. For USB devices, you
must specify a blank parameter for the virtual device key, the physical device key for the local USB device,
and the backing type.

For file-backed physical devices, use the full path to the device file as the physical key.

6 When you are finished with device operations, use the disconnectDevice() API method to disconnect
the device.

Managing USB Devices

To connect a USB device, you use the VMRC API to obtain a physical client device key for the local physical
USB device. When you connect the local USB device to a remote virtual machine, the USB device becomes a
new virtual USB device for that virtual machine. A connected USB device appears in both the local physical
device list that you obtain using the getPhysicalClientDevices() method, and the remote virtual device
list that you obtain using getVirtualDevices().

NOTE USB devices are not supported when using VMRC with vCloud Director.

You can match the USB device on the local physical machine with the corresponding remote virtual device by
performing the following steps.

To match a local physical USB device with a remote USB device connection

1 Obtain the virtual device key for the remote virtual USB device on the connected virtual machine.

You can use the getVirtualDevices() method and specify VMRC_DeviceType.VMRC_DEVICE_USB to
retrieve only USB devices.

2 To obtain device details for the remote virtual USB device, use the getVirtualDeviceDetails()
method, passing the virtual device key.

The device detail connectedByMe indicates whether the remote virtual USB device is connected from
your local physical machine. If connectedByMe is true, the remote virtual USB device corresponds to a
local physical USB device. The device detail backingKey contains the physical device key for the local
physical USB device.

If connectedByMe is false, a different VMRC client has connected a physical USB device to the virtual
machine. The device detail hostName provides the name of the machine that owns the physical USB
device.

3 To obtain device details for the local physical USB device, use the getPhysicalClientDeviceDetails()
method, passing the backingKey that you obtained in step 2.

VMRC SDK Programming Guide

22 VMware, Inc.

getPhysicalClientDevices()

You use the getPhysicalClientDevices() method to obtain a list of physical device keys. These physical
device keys correspond to physical client devices on the local machine, accessing your Web application, that
are eligible for remove device connections. When you call the getPhysicalClientDevices() method, you
pass a property value constant that specifies the types of devices for which to obtain device keys.

NOTE When using the getPhysicalClientDevices() method with the Internet Explorer browser, you must
wrap the return value array as a VBArray. The following example shows how to process the return value of
getPhysicalClientDevices() as a VBArray.

var devices = new VBArray(vmrc.getPhysicalClientDevices(mask)).toArray();

getPhysicalClientDeviceDetails()

You use the getPhysicalClientDeviceDetails() method to obtain detailed information about a particular
local physical device. The getPhysicalClientDeviceDetails() method returns a JavaScript object that
contains the device information.

getVirtualDevices()

You use the getVirtualDevices() method to obtain a list of virtual device keys. These virtual device keys
correspond to virtual devices on the currently connected virtual machine that are eligible for remote device
connections. When you call the getVirtualDevices() method, you pass a property value constant that
specifies the types of devices for which to obtain device keys.

NOTE When using the getVirtualDevices() method with the Internet Explorer browser, you must wrap
the return value array as a VBArray. The following example shows how to process the return value of
getVirtualDevices() as a VBArray.

var devices = new VBArray(vmrc.getVirtualDevices(mask)).toArray();

Method getPhysicalClientDevices(mask)

Parameters mask (property value constant); the mask value specifies what types of device keys the
method returns. The mask parameter can contain any combination of the values
VMRC_DEVICE_FLOPPY, VMRC_DEVICE_CDROM, and VMRC_DEVICE_USB. You can also use
VMRC_DEVICE_ALL to specify all device types.
When using VMRC with vCloud Director, VMRC_DEVICE_ALL specifies only floppy and
CD-ROM device types.

Return Value string[] vector of physical device key strings.

Example Call var deviceKeys = vmrc.getPhysicalClientDevices(VMRC_DEVICE_FLOPPY |
VMRC_DEVICE_CDROM);

Method getPhysicalClientDeviceDetails(physicalKey)

Parameters physicalKey (string); the physical device key for the specified device, retrieved using the
getPhysicalClientDevices() method.

Return Value JavaScript Object that contains the following fields (keyed by strings):
key (string): Device key
type (VMRC_DeviceType): Device type
state (VMRC_DeviceState): Device state
connectedByMe (boolean): Whether the device is connected by the current VMRC instance
name (string): Device-friendly name
path (string): Device path
usbFamilies (VMRC_USBDeviceFamily): (USB only) Mask of VMRC_USBDeviceFamily
property value constant values
usbSharable (boolean): (USB only) Whether the device is sharable by multiple VMRC
instances
usbSpeeds (VMRC_USBDeviceSpeed): (USB only) Mask of VMRC_USBDeviceSpeed
property value constant values

Example Call var ret = vmrc.getPhysicalClientDeviceDetails(key);

VMware, Inc. 23

Chapter 3 Using the VMRC Plug-In and the API

getVirtualDeviceDetails()

You use the getVirtualDeviceDetails() method to obtain detailed information about a particular virtual
device. The getVirtualDeviceDetails() method returns a JavaScript object that contains the device
information.

connectDevice()

You use the connectDevice() method to connect a physical client device to the currently connected virtual
machine, either directly, for USB devices, or through a remote device backing, for non-USB devices. You must
have an active connection to use the connectDevice() method and you must also have obtained the device
keys for the specified physical client and remote virtual device for non-USB devices.

NOTE To connect a USB device, the remote virtual machine must have a USB controller installed. Connecting
USB devices is not supported when using VMRC with vCloud Director.

Method getVirtualDevices(mask)

Parameters mask (property value constant); the mask value specifies what types of device keys the
method returns. The mask parameter can contain any combination of the values
VMRC_DEVICE_FLOPPY, VMRC_DEVICE_CDMROM, and VMRC_DEVICE_USB. You can also use
VMRC_DEVICE_ALL to specify all device types.
When using VMRC with vCloud Director, VMRC_DEVICE_ALL specifies only floppy and
CD-ROM device types.

Return Value string[] vector of virtual device key strings.

Example Call var deviceKeys = vmrc.getVirtualDevices(VMRC_DEVICE_FLOPPY |
VMRC_DEVICE_CDROM);

Method getVirtualDeviceDetails(virtualKey)

Parameters virtualKey (string); the virtual device key for the specified device, retrieved using the
getVirtualDevices() method..

Return Value JavaScript Object that contains the following fields (keyed by strings):
key (string): Device key
type (VMRC_DeviceType): Device type
state (VMRC_DeviceState): Device state
connectedByMe (boolean): Whether the device is connected by the current VMRC instance
name (string): Device-friendly name
hostName (string): Host name of the physical machine that provides the virtual device
backing
clientBacking (boolean): Whether the device is configured to support a client backing
backingKey (string): Physical key for the physical device backing the virtual device
backing (VMRC_DeviceBacking): Device backing type

Example Call var ret = vmrc.getVirtualDeviceDetails(key);

Method connectDevice(virtualKey, physicalKey, backingType)

Parameters virtualKey (string); The identifier of the target virtual machine’s virtual device, which
you can retrieve by using the getVirtualDevices() method. For USB devices, this
parameter should be passed as an empty string (““).
physicalKey (string); The identifier of the physical device on the client system, which
you can retrieve by using the getPhysicalClientDevices() method. If you are using a
physical device with a file backing, the physicalKey string must be the file path.
backingType (property value constant); This parameter indicates whether the
physicalKey parameter refers to a physical device or a local file. Valid values include
VMRC_DB_FILE and VMRC_DB_PHYSICAL. If you are using VMRC_DB_FILE to represent a
CD-ROM or floppy device with a file backing, the physical key must be the absolute file path.

VMRC SDK Programming Guide

24 VMware, Inc.

If the call to connectDevice() is successful, the VMRC browser plug-in generates an
onDeviceStateChange() event. If the call is unsuccessful, the VMRC browser plug-in throws an exception.

disconnectDevice()

You use the disconnectDevice() method to disconnect a physical client device from the currently connected
virtual machine. You must have an active connection to use the disconnectDevice() method. For non-USB
devices, you must specify the virtual device key of the remote virtual device to disconnect. For USB devices,
you must specify the physical device key of the physical client device to disconnect.

If the call to disconnectDevice() is successful, the VMRC browser plug-in generates an
onDeviceStateChange() event. If the call is unsuccessful, the VMRC browser plug-in throws an exception.

Disconnecting and Shutting Down the VMRC Browser Plug-In
On termination, your Web application can clean up the VMRC processes by closing active connections and
shutting down the VMRC browser plug-in.

Disconnecting an Active Connection

If your Web application has finished performing operations on the target virtual machine, or you otherwise
want to close the connection, you can use the disconnect() API method to terminate the connection to the
remote host. Disconnecting the VMRC browser plug-in from the target virtual machine terminates any active
device connections. You can use an advanced configuration option to ensure that virtual device connections
remain persistent after you call disconnect().

The disconnect() method accepts no parameters and does not return a value. If a failure occurs, an exception
is generated. If the call to disconnect() is successful, the VMRC browser plug-in will generate an
onConnectionStateChange() event. An example call to the disconnect() method might appear as follows:

vmrc.disconnect();

Shutting down the VMRC Browser Plug-In

You can shut down the VMRC browser plug-in by invoking the shutdown() method. Shutting down the
VMRC browser plug-in stops the corresponding VMRC peer processes within the plug-in, and terminates any
active connections.

The shutdown() method accepts no parameters and does not return a value. An exception is generated if the
call to shutdown() fails or encounters an error. An example call to the shutdown() method is as follows:

vmrc.shutdown();

Return Value void

Example Call For non-USB devices (pKey refers to a physical CD-ROM device):
vmrc.connectDevice(vKey, pKey, VMRC_DB_PHYSICAL);

For USB devices (pKey refers to a physical USB device):
vmrc.connectDevice(““, pKey, VMRC_DB_PHYSICAL);

For a file-backed physical device (pKey refers to a file path):
vmrc.connectDevice(vKey, pKey, VMRC_DB_FILE);

Method disconnectDevice(deviceKey)

Parameters deviceKey (string); The identifier of the device to disconnect. For non-USB devices, this
must be the virtual key of the virtual device on the target virtual machine. For USB devices,
this must be the physical key of the physical client device.

Return Value void

Example Call vmrc.disconnectDevice(deviceKey);

VMware, Inc. 25

4

This chapter contains the following topics:

 “VMRC Event Parameters” on page 25

 “List of VMRC Events” on page 25

The VMRC browser plug-in generates events in response to changes in the VMRC session, such as changes in
the connection state or messages generated by the currently connected virtual machine. In your Web
application, you can bind these VMRC events to JavaScript handler methods that are called when the VMRC
browser plug-in generates the corresponding event. You set handler methods for the VMRC events to which
you want to respond when you load and set up the VMRC browser plug-in. See Chapter 2, “Setting Up the
VMRC Browser Plug-In,” on page 9.

VMRC Event Parameters
Each event that the VMRC browser plug-in generates has associated parameters. The JavaScript handler
method that you define for a particular event must accept the same set of parameters that the event API
provides. For example, the VMRC event onScreenSizeChange provides two integer parameters: the new
screen width and the new screen height. The handler method that you provide for the onScreenSizeChange
event must likewise accept the two integer values for width and height as parameters.

For more information on defining handler methods as part of the VMRC browser plug-in setup process, see
“Setting Handlers for VMRC Events” on page 11.

List of VMRC Events
The VMRC browser plug-in generates some events, such as message events and connection state change
events, regardless of the mode you choose when starting the VMRC processes. Events related to changes in
the console state, such as screen or input, are generated when the VMRC browser plug-in is started in MKS
mode. Events related to changes in device state are generated only when the VMRC browser plug-in is started
in Devices mode.

General-Purpose Events

The VMRC browser plug-in generates general-purpose events regardless of the mode you choose when
starting the VMRC browser plug-in.

onConnectionStateChange(connectionState, host, datacenter, vmId, userRequested,
reason)

The onConnectionStateChange() event is generated in response to a change in the connection state.

Handling VMRC Events 4

VMRC SDK Programming Guide

26 VMware, Inc.

onMessage(type, message)

The onMessage() event is generated in response to messages from the VMRC browser plug-in. The message
string included with the onMessage() event contains information and other messages from the VMRC
browser plug-in that pertain directly to the user of your web application. Your web application can display the
message string to the user using a dialog or other alert.

MKS Mode Events

The VMRC browser plug-in generates MKS mode events in response to changes in the console screen or input
state. MKS events are generated only if the VMRC browser plug-in is started in MKS mode.

onScreenSizeChange(width, height)

The onScreenSizeChange() event is generated in response to changes in the screen size of the currently
connected virtual machine.

onFullscreenChange(fullscreenState)

The onFullscreenChange() event is generated when the VMRC browser plug-in exits or enters full-screen
mode.

Parameter Name Type Description/Notes

connectionState string New connection state. Can be either
VMRC_CS_CONNECTED or
VMRC_CS_DISCONNECTED.

host string Remote host name for the connection.

datacenter string Datacenter associated with the remote host.

vmId string Virtual machine ID for the current connection.

userRequested boolean Boolean value denoting whether the user
requested the change in connection state.

reason string String containing information on the
connection state change. The reason string
contains user-visible information, suitable for
a dialog or other alert.

Parameter Name Type Description/Notes

type Property Value Constant Message type. Values can include
VMRC_MESSAGE_INFO,
VMRC_MESSAGE_WARNING,
VMRC_MESSAGE_ERROR, or
VMRC_MESSAGE_HINT

message string The message content.

Parameter Name Type Description/Notes

width int New screen width in pixels.

height int New screen height in pixels.

Parameter Name Type Description/Notes

fullscreenState boolean If true, the plug-in has entered full-screen
mode. If false, the plug-in has exited
full-screen mode.

VMware, Inc. 27

Chapter 4 Handling VMRC Events

onGrabStateChange(grabState)

The onGrabStateChange() event is generated when the VMRC browser plug-in input grab state, when guest
input is either grabbed or released.

Devices Mode Events

The VMRC browser plug-in generates Devices mode events in response to changes in the state of currently
connected devices, or changes in which devices are present either on the physical client or remote virtual
machines. Devices mode events are only generated when the VMRC browser plug-in is started in Devices
mode.

onDeviceStateChange(deviceState, host, datacenter, vm, virtualKey, physicalKey,
userRequested, reason)

The onDeviceStateChange() event is generated in response to a change in the connection state of a virtual
machine device.

onVirtualDevicesChange()

The onVirtualDevicesChange() event is generated when there is a change to any virtual devices that are
present on the target virtual machine, for any reason. This event contains no parameters.

When your Web application receives the onVirtualDevicesChange() event, you can use the
getVirtualDevices() API method to obtain the updated list of virtual device keys, and the
getVirtualDeviceDetails() API method to obtain updated detailed information on each virtual device.
See “Calling VMRC API Methods on a Virtual Machine” on page 17.

Parameter Name Type Description/Notes

grabState Property Value Constant New grab state. Values can include
VMRC_GS_GRABBED,
VMRC_GS_UNGRABBED_HARD, or
VMRC_GS_UNGRABBED_SOFT.
In a soft-ungrab state, input is redirected to
the guest when the user mouses over the guest
window.

Parameter Name Type Description/Notes

ds string New device state. Can be either
VMRC_DS_CONNECTED or
VMRC_DS_DISCONNECTED.

host string Host name of the remote host.

datacenter string Datacenter associated with the remote host.

vmId string ID of the virtual machine on which the device
state changed.

virtualKey string Virtual device key for which the state
changed.

physicalKey string Physical device key, if the device is connected.

userRequested boolean Boolean value denoting whether the user
requested the change in device state.

reason string String containing information on the device
state change. The reason string contains
user-visible information, suitable for a dialog
or other alert.

VMRC SDK Programming Guide

28 VMware, Inc.

onPhysicalClientDevicesChange()

The onPhysicalClientDevicesChange() event is generated when there is a change to any physical devices
that are present on the local client machine, for any reason. This event contains no parameters.

When your Web application receives the onPhysicalClientDevicesChange() event, you can use the
getPhysicalClientDevices() API method to obtain the updated list of physical device keys, and the
getPhysicalClientDeviceDetails() API method to obtain updated detailed information on each physical
client device. See “Calling VMRC API Methods on a Virtual Machine” on page 17.

VMware, Inc. 29

Index

Numerics
32-bit and 64-bit Linux 10

A
API methods, VMRC on virtual machines 17

API using JavaScript 7

application log for VMRC 11

architecture overview for VMRC 7

B
browser requirements for VMRC plug-in 8

C
Chrome by Google 8

Chrome, setting handlers 11

classid and type attributes 10

connect method 8, 16

authentication choices 17

example connect call 16

onConnectionStateChange event 16

parameters for 16

virtual machine identifier 17

connectDevice method 23

D
device keys and connecting devices 20

devices mode vs MKS mode 14

disconnect method 8, 24

disconnectDevice method 24

E
events in VMRC, list of 25

F
Firefox from Mozilla 8

Firefox, setting handlers 11

G
getConnectionState method 18

getFullScreen method 19

getPhysicalClientDeviceDetails method 22

getPhysicalClientDevices method 22

getVersion method 18

getVirtualDeviceDetails method 23

getVirtualDevices method 22

glossary of terms 5

grabInput method 19

H
handlers for VMRC events, setting 11

I
initializing the VMRC browser plug-in 14

instance class ID, setting 10

Internet Explorer by Microsoft 8

Internet Explorer, setting handlers 11

isReadyToStart method 14

J
JavaScript API 7

JavaScript requirement for VMRC 8

K
keys for connecting devices 20

L
Linux browser support 8

log files on Linux 12

log files on Windows 12

M
Mac OS X, lack of support 8

MKS mode vs devices mode 14

O
object instance type attribute, setting 10

onConnectionStateChange event 8, 25

onConnectionStateChangeHandler 11

onDeviceStateChange event 27

onFullscreenChange event 8, 26

onGrabStateChange event 27

onMessage event 26

onPhysicalClientDevicesChange 28

onScreenSizeChange event 26

onVirtualDevicesChange event 27

P
parameters of VMRC events 25

plug-in for Linux, installer 10

plug-in for Windows, installer 10

plug-in log for VMRC 11

procedure to use the VMRC API 13

property value constants, setting 9

VMRC SDK Programming Guide

30 VMware, Inc.

R
remote MKS log for VMRC 11

revision history 5

S
screenHeight method 19

screenWidth method 18

sendCAD (Ctrl Alt Delete) method 19

setFullscreen method 8, 19

setInputRelease method 20

setScreenSize method 18

shutdown method 8, 24

startup method 8, 14

advanced configuration flags 15

example startup call 15

parameters for 15

steps to use the VMRC API 13

U
ungrabInput method 20

USB arbitrator log for VMRC 12

USB devices, managing 21

V
vCloud, VMRC use in 7

version of browser plug-in, verifying 13

VMRC_CS_CONNECTED 9

vSphere, VMRC use in 7

W
Windows browser support 8

workflow for using VMRC 8

	VMRC SDK Programming Guide
	Contents
	About This Book
	Remote Console Access with VMRC
	Overview of VMRC Architecture
	Requirements for Using the VMRC Browser Plug-In
	VMRC Workflow

	Setting Up the VMRC Browser Plug-In
	Downloading the VMRC SDK
	Using VMRC Property Value Constants
	Loading the VMRC Browser Plug-In
	Windows Plug-in
	Linux 32-Bit and 64-Bit

	Setting Handlers for VMRC Events
	Setting Handlers in Internet Explorer
	Setting Handlers in Firefox or Chrome
	Abstracting Event Handler Setup

	Accessing VMRC Log Files
	Windows Log File Locations
	Linux Log File Locations

	Using the VMRC Plug-In and the API
	Starting the VMRC Browser Plug-In
	Verifying the VMRC Browser Plug-In Version
	Initializing the VMRC Browser Plug-In
	Using isReadyToStart()
	Using the startup() Method

	Connecting to a Remote Host and Virtual Machine
	Connection Authentication
	Virtual Machine Identifier

	Calling VMRC API Methods on a Virtual Machine
	General-Purpose API Methods
	getVersion()
	getConnectionState()

	MKS Mode API Methods
	setScreenSize()
	screenWidth()
	screenHeight()
	setFullscreen()
	getFullScreen()
	sendCAD()
	grabInput()
	ungrabInput()
	setInputRelease()

	Devices Mode API Methods
	Obtaining Device Keys and Connecting Devices
	Managing USB Devices
	getPhysicalClientDevices()
	getPhysicalClientDeviceDetails()
	getVirtualDevices()
	getVirtualDeviceDetails()
	connectDevice()
	disconnectDevice()

	Disconnecting and Shutting Down the VMRC Browser Plug-In
	Disconnecting an Active Connection
	Shutting down the VMRC Browser Plug-In

	Handling VMRC Events
	VMRC Event Parameters
	List of VMRC Events
	General-Purpose Events
	onConnectionStateChange(connectionState, host, datacenter, vmId, userRequested, reason)
	onMessage(type, message)

	MKS Mode Events
	onScreenSizeChange(width, height)
	onFullscreenChange(fullscreenState)
	onGrabStateChange(grabState)

	Devices Mode Events
	onDeviceStateChange(deviceState, host, datacenter, vm, virtualKey, physicalKey, userRequested, reason)
	onVirtualDevicesChange()
	onPhysicalClientDevicesChange()

	Index

