VMware vSphere Automation SDKs Programming Guide

Update 2
11 APR 2019
VMware vSphere Automation SDK 6.7
ESXi 6.7
vCenter Server 6.7
Contents

1 About vSphere Automation SDKs Programming Guide 7

2 Introduction to the vSphere Automation SDKs 8
 vSphere Automation SDKs Overview 8
 Supported Programming Languages 10

3 Components of the vSphere Automation Virtualization Layer 11
 Components and Services of a Virtual Environment 11
 vSphere Deployment Configurations 12

4 Retrieving Service Endpoints 15
 Filtering for Predefined Service Endpoints 16
 Filter Parameters for Predefined Service Endpoints 17
 Connect to the Lookup Service and Retrieve the Service Registration Object 17
 Java Example of Connecting to the Lookup Service and Retrieving the Service Registration Object 18
 .NET Example of Connecting to the Lookup Service and Retrieving a Service Registration Object 19
 Python Example of Connecting to the Lookup Service and Retrieving a Service Registration Object 20
 Retrieve Service Endpoints on vCenter Server Instances 21
 Java Example of Retrieving a Service Endpoint on a vCenter Server Instance 22
 .NET Example of Retrieving a Service Endpoint on a vCenter Server Instance 23
 Python Example of Retrieving a Service Endpoint on a vCenter Server Instance 23
 Perl Example of Retrieving a Service Endpoint from Multiple vCenter Server instances 24
 Retrieve a vCenter Server ID by Using the Lookup Service 26
 Java Example of Retrieving a vCenter Server ID by Using the Lookup Service 26
 .NET Example of Retrieving a vCenter Server ID by Using the Lookup Service 27
 Python Example of Retrieving a vCenter Server ID by Using the Lookup Service 28
 Perl Example of Retrieving a vCenter Server ID By Using the Lookup Service 29
 Retrieve a vSphere Automation Endpoint on a vCenter Server Instance 29
 Java Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance 30
 .NET Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance 30
 Python Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance 31
 Perl Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance 31
5 Authentication Mechanisms 33
Retrieve a SAML Token 34
 Java Example of Retrieving a SAML Token 34
 .NET Example of Retrieving a SAML Token 35
 Python Example of Retrieving a SAML Token 35
 Perl Example of Retrieving a SAML Token 36
Create a vSphere Automation Session with a SAML Token 36
 Java Example of Creating a vSphere Automation API Session with a SAML Token 37
 .NET Example of Creating a vSphere Automation API Session with a SAML Token 38
 Python Example of Creating a vSphere Automation API Session with a SAML Token 39
 Perl Example of Creating a vSphere Automation API Session with a SAML Token 40
Create a vSphere Automation Session with User Credentials 41
 Java Example of Creating a vSphere Automation API Session with User Credentials 42
Create a Web Services Session 43
 Python Example of Creating a Web Services Session 43
 Perl Example of Creating a Web Services Session 44

6 Accessing vSphere Automation Services 45
Access a vSphere Automation Service 46
 Java Example of Accessing a vSphere Automation Service 46

7 Content Library Service 48
Content Library Overview 48
 Content Library Types 49
 Content Library Items 49
 Content Library Storage 49
Querying Content Libraries 52
 Listing All Content Libraries 52
 Listing Content Libraries of a Specific Type 54
 List Content Libraries by Using Specific Search Criteria 55
Content Libraries 57
 Create a Local Content Library 58
 Publish an Existing Content Library 60
 Publish a Library at the Time of Creation 63
 Subscribe to a Content Library 64
 Synchronize a Subscribed Content Library 68
 Editing the Settings of a Content Library 69
 Removing the Content of a Subscribed Library 70
 Delete a Content Library 71
Library Items 71
 Create an Empty Library Item 72
 Querying Library Items 75
Edit the Settings of a Library Item 75
Upload a File from a Local System to a Library Item 79
Upload a File from a URL to a Library Item 83
Download Files to a Local System from a Library Item 87
Synchronizing a Library Item in a Subscribed Content Library 92
Removing the Content of a Library Item 93
Deleting a Library Item 93
Create a VM Template Library Item in a Local Content Library 93
Deploy a Virtual Machine from a VM Template Library Item 97

8 Content Library Support for OVF and OVA Packages 101
Using the Content Library Service to Handle OVF and OVA Packages 101
Upload an OVF Package from a URL to a Library Item 102
Upload an OVF Package from a Local File System to a Library Item 103
Upload an OVA Package to a Library Item 105
Using the LibraryItem Service to Execute OVF-Specific Tasks 107
Deploy a Virtual Machine or Virtual Appliance from an OVF Package in a Content Library 107
Create an OVF Package in a Content Library from a Virtual Machine 109

9 Tagging Service 113
Creating Tags 113
Creating a Tag Category 114
Creating a Tag 116
Creating Tag Associations 119
Assign the Tag to a Content Library 119
Assign a Tag to a Cluster 120
Updating a Tag 123
Java Example of Updating a Tag Description 123
.NET Example of Updating a Tag Description 123
Python Example of Updating a Tag Description 124

10 Virtual Machine Configuration and Operations 125
Filtering Virtual Machines 125
Java Example of Filtering Virtual Machines 125
Python Example of Filtering Virtual Machines 126
Create a Virtual Machine 126
Java Example of Creating a Basic Virtual Machine 127
Python Example of Creating a Basic Virtual Machine 128
Configuring a Virtual Machine 129
Name and Placement 129
Boot Options 132
Operating System 135
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU and Memory</td>
<td>135</td>
</tr>
<tr>
<td>Networks</td>
<td>139</td>
</tr>
<tr>
<td>Performing Virtual Machine Power Operations</td>
<td>143</td>
</tr>
<tr>
<td>Java Example of Powering On a Virtual Machine</td>
<td>144</td>
</tr>
<tr>
<td>Python Example of Powering On a Virtual Machine</td>
<td>144</td>
</tr>
<tr>
<td>.NET Example of Powering On a Virtual Machine</td>
<td>145</td>
</tr>
</tbody>
</table>

11 Managing Certificates 146

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Requests for Certificate Management</td>
<td>147</td>
</tr>
<tr>
<td>cURL Examples of Certificate Management Operations</td>
<td>148</td>
</tr>
</tbody>
</table>
VMware vSphere Automation SDKs Programming Guide provides information about configuring the VMware vSphere® Automation™ SDKs. VMware provides different APIs and SDKs for different applications and goals. The vSphere Automation SDKs support the development of clients that use the vSphere Automation SDK for infrastructure support tasks.

Intended Audience

This information is intended for anyone who wants to use the vSphere Automation SDKs.
Introduction to the vSphere Automation SDKs

The vSphere Automation SDKs bundle client libraries for accessing new vSphere Automation features like Content Library and existing features like Tagging. The vSphere Automation SDKs contain sample applications and API reference documentation for the Content Library and Tagging services. The vSphere Automation SDKs also provide sample code that retrieves the endpoints of vSphere Automation and vSphere services and establishes a secure connection with the vSphere Automation endpoint.

vSphere Automation supports five languages for accessing the vSphere Automation API services and provides five SDKs for developing client applications for managing components in your virtual environment.

This chapter includes the following topics:
- vSphere Automation SDKs Overview
- Supported Programming Languages

vSphere Automation SDKs Overview

The vSphere Automation API provides a unified programming interface to vSphere Automation services that you can use through SDKs provided in five programming languages. The vSphere Automation API provides a service-oriented architecture for accessing resources in the virtual environment by issuing requests to the vSphere Automation Endpoint.

vSphere Automation API client applications communicate with services on the Platform Services Controller and vCenter Server.
vSphere Automation API client applications use the Lookup Service to retrieve the vCenter Single Sign-On endpoint, the vSphere Automation Endpoint, and the endpoints of services that are exposed through the vSphere API. To access vSphere Automation services such as Content Library and Tagging, client applications issue requests to the vSphere Automation Endpoint. By using the vCenter Single Sign-On service, client applications can either establish an authenticated vSphere Automation session, or authenticate individual requests to the vSphere Automation Endpoint.

Client applications can access services that are exposed through the vSphere API by using the vSphere Management SDK.

Depending on the vSphere deployment model, client applications can communicate with vSphere Automation services on a single vCenter Server instance or multiple vCenter Server instances. For more information about the vSphere deployment models, see Chapter 3 Components of the vSphere Automation Virtualization Layer

SDK Developer Setup

To start developing a vSphere Automation API client application, you must download the software and set up a development environment. You can find instructions for setting up a development environment in the README for each vSphere Automation SDK.
SDK Samples

The vSphere Automation SDKs provide sample applications that you can extend to implement client applications that serve your needs. The code examples in the vSphere Automation SDKs documentation are based on these sample applications.

Supported Programming Languages

The vSphere Automation SDKs are packed in five different programming languages that let you build client applications on your preferred programming language.

- vSphere Automation SDK for Java
- vSphere Automation SDK for Python
- vSphere Automation SDK for .NET
- vSphere Automation SDK for Perl
- vSphere Automation SDK for REST
Components of the vSphere Automation Virtualization Layer

At the core of vSphere Automation is vSphere, which provides the virtualization layer of the software-defined data center. You can use vSphere deployment options for vCenter Server and ESXi hosts to build virtual environments of different scales.

This chapter includes the following topics:
- Components and Services of a Virtual Environment
- vSphere Deployment Configurations

Components and Services of a Virtual Environment

Starting with vSphere 6.0, the deployment of the virtual environment consists of two major components that provide different sets of services, the VMware Platform Services Controller and vCenter Server. You can deploy vCenter Server with an embedded or external Platform Services Controller.

Services Installed with Platform Services Controller

The Platform Services Controller group of infrastructure services contains vCenter Single Sign-On, License Service, Lookup Service, and VMware Certificate Authority. The services installed with the Platform Services Controller are common to the entire virtual environment. A Platform Services Controller can be connected to one or more vCenter Server instances. In a deployment that consists of more than one Platform Services Controller, the data of each service is replicated across all Platform Services Controller instances.
In vSphere Automation API client applications, you use the vCenter Single Sign-On and the Lookup Service on the Platform Services Controller to provide a range of functionality.

Authentication and Session Management
You use the vCenter Single Sign-On service to establish an authenticated session with the vSphere Automation Endpoint. You send credentials to the vCenter Single Sign-On service and receive a SAML token that you use to obtain a session ID from the vSphere Automation Endpoint. Alternatively, you can access the vSphere Automation APIs in a sessionless manner by including the SAML token in every request that you issue to the vSphere Automation Endpoint.

Service Discovery
You use the Lookup Service to discover the endpoint URL for the vCenter Single Sign-On service on the Platform Services Controller, the location of the vCenter Server instances, and the vSphere Automation Endpoint.

Services Installed with vCenter Server
vCenter Server is a central administration point for ESXi hosts. The vCenter Server group of services contains vCenter Server, vSphere Web Client, Inventory Service, vSphere® Auto Deploy™, vSphere® ESXi™ Dump Collector, VMware vSphere® Syslog Collector on Windows and VMware vSphere Syslog Service for the vCenter Server Appliance.

vCenter Server also provides services that you can access through the vSphere Automation Endpoint.

Content Library Service
You can use the Content Library Service to share VM templates, vApp templates, and other files across the software-defined data center. You can create, share, and subscribe to content libraries on the same vCenter Server instance or on a remote instance. This promotes consistency, compliance, efficiency, and automation in deploying workloads at scale. By using content libraries, you can also create OVF packages from virtual machines and virtual appliances in hosts, resource pools, and clusters. You can then use the OVF packages to provision new virtual machines in hosts, resource pools, and clusters.

Tagging Service
This service supports the definition of tags that you can associate with vSphere objects or vSphere Automation resources. The vSphere Automation SDKs provide the capability to manage tags programmatically.

vSphere Deployment Configurations
vSphere Automation client applications communicate with services on the Platform Services Controller and vCenter Server components of the virtual environment. vCenter Server can be deployed with an embedded or external Platform Services Controller.
vCenter Server with an Embedded Platform Services Controller

vCenter Server and Platform Services Controller reside on the same virtual machine or physical server. This deployment is most suitable for small environments such as development or test beds.

You can use the Platform Services Controller in two ways to establish secure, authenticated sessions for your client application, by making requests to the Lookup Service and the vCenter Single Sign-On Service.

One way to use the Platform Services Controller is to request an authentication token that can be used to authenticate requests across services. The client connects to the Lookup Service and retrieves the vCenter Single Sign-On Service endpoint and the vSphere Automation API endpoint. The client then uses the vCenter Single Sign-On endpoint to authenticate with user credentials and receive a token that securely verifies the client's credentials. This allows the client to authenticate with a number of service endpoints without sending user credentials over the network repeatedly.

Alternatively, if the client connects directly to the vSphere Automation API endpoint, there is no need for the client to interact with the vCenter Single Sign-On Service. The client sends user credentials to the vSphere Automation API endpoint, which creates a session identifier that persists across requests.

Figure 3-1. vCenter Server with Embedded Platform Services Controller
vCenter Server with an External Platform Services Controller

In the case of an external Platform Services Controller, the vCenter Server and the Platform Services Controller are deployed on separate virtual machines or physical servers. The Platform Services Controller can be shared across several vCenter Server instances. For larger deployments or to provide better availability, more than one Platform Services Controller can be deployed. When configured as replication partners within a single vCenter Single Sign-On domain, Platform Services Controller instances replicate all user and system data within the cluster.

A client application functions in a similar way as in a Platform Services Controller with embedded vCenter Server deployment. The only difference is that the client application can access services on multiple vCenter Server instances, or services only on a particular vCenter Server instance.

Figure 3-2. vCenter Server with External Platform Services Controller
Retrieving Service Endpoints

To access services and resources in the virtual environment, vSphere Automation API client applications must know the endpoints of vSphere Automation and vSphere services. Client applications retrieve service endpoints from the Lookup Service that runs on the Platform Services Controller.

The Lookup Service provides service registration and discovery by using a Web services API. By using the Lookup Service, you can retrieve endpoints of services on the Platform Services Controller and vCenter Server. The following endpoints are available from the Lookup Service.

- The vCenter Single Sign-On endpoint on the Platform Services Controller. You use the vCenter Single Sign-On service to get a SAML token and establish an authenticated session with a vSphere Automation endpoint or a vCenter Server endpoint.
- The vSphere Automation Endpoint on vCenter Server. Through the vSphere Automation Endpoint, you can make requests to vSphere Automation API services such as virtual machine management, Content Library, and Tagging.
- The vCenter Server endpoint. In an environment with external Platform Services Controller instances, you can use the vCenter Server endpoint to get the node ID of a particular vCenter Server instance. By using the node ID, you can retrieve service endpoints on that vCenter Server instance.
- The vSphere API endpoint and endpoints of other vSphere services that run on vCenter Server.

Workflow for Retrieving Service Endpoints

The workflow that you use to retrieve service endpoints from the Lookup Service might vary depending on the endpoints that you need and their number. Follow this general workflow for retrieving service endpoints.

1. Connect to the Lookup Service on the Platform Services Controller and service registration object so that you can query for registered services.
2. Create a service registration filter for the endpoints that you want to retrieve.
3. Use the filter to retrieve registration information for services from the Lookup Service.
4. Extract one or more endpoint URLs from the array of registration information that you receive from the Lookup Service.
This chapter includes the following topics:

- Filtering for Predefined Service Endpoints
- Filter Parameters for Predefined Service Endpoints
- Connect to the Lookup Service and Retrieve the Service Registration Object
- Retrieve Service Endpoints on vCenter Server Instances
- Retrieve a vCenter Server ID by Using the Lookup Service
- Retrieve a vSphere Automation Endpoint on a vCenter Server Instance

Filtering for Predefined Service Endpoints

The Lookup Service maintains a registration list of vSphere services. You can use the Lookup Service to retrieve registration information for any service by setting a registration filter that you pass to the `List()` function on the Lookup Service. The functions and objects that you can use with the Lookup Service are defined in the `lookup.wsdl` file that is part of the SDK.

Lookup Service Registration Filters

You can query for service endpoints through a service registration object that you obtain from the Lookup Service. You invoke the `List()` function on the Lookup Service to list the endpoints that you need by passing `LookupServiceRegistrationFilter`. `LookupServiceRegistrationFilter` identifies the service and the endpoint type that you can retrieve.

Optionally, you can include the node ID parameter in the filter to identify the vCenter Server instance where the endpoint is hosted. When the node ID is omitted, the `List()` function returns the set of endpoint URLs for all instances of the service that are hosted on different vCenter Server instances in the environment.

For example, a `LookupServiceRegistrationFilter` for queering the vSphere Automation service has these service endpoint elements.

<table>
<thead>
<tr>
<th>Filter Types</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>LookupServiceRegistrationServiceType</code></td>
<td><code>product= "com.vmware.cis"</code></td>
<td>vSphere Automation namespace.</td>
</tr>
<tr>
<td></td>
<td><code>type= "cs.vapi"</code></td>
<td>Identifies the vSphere Automation service.</td>
</tr>
<tr>
<td><code>LookupServiceRegistrationEndpointType</code></td>
<td><code>type= "com.vmware.vapi.endpoin t"</code></td>
<td>Specifies the endpoint path for the service.</td>
</tr>
<tr>
<td></td>
<td><code>protocol= "vapi.json.https.public"</code></td>
<td>Identifies the protocol that will be used for communication with the endpoint.</td>
</tr>
</tbody>
</table>

For information about the filter parameter of the available predefined service endpoints, see Filter Parameters for Predefined Service Endpoints.
Filter Parameters for Predefined Service Endpoints

Depending on the service endpoint that you want to retrieve, you provide different parameters to the `LookupServiceRegistrationFilter` that you pass to the `List()` function on the Lookup Service. To search for services on a particular vCenter Server instance, set the node ID parameter to the filter.

Table 4-2. Input Data for URL Retrieval for the Lookup Service Registration Filter

<table>
<thead>
<tr>
<th>Service</th>
<th>Input Data</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Single Sign-On</td>
<td>product namespace</td>
<td>com.vmware.cis</td>
</tr>
<tr>
<td></td>
<td>service type</td>
<td>cs.identity</td>
</tr>
<tr>
<td></td>
<td>protocol</td>
<td>wsTrust</td>
</tr>
<tr>
<td></td>
<td>endpoint type</td>
<td>com.vmware.cis.cs.identity.sso</td>
</tr>
<tr>
<td>vSphere Automation Endpoint</td>
<td>product namespace</td>
<td>com.vmware.cis</td>
</tr>
<tr>
<td></td>
<td>service type</td>
<td>cs.vapi</td>
</tr>
<tr>
<td></td>
<td>protocol</td>
<td>vapi.json.https.public</td>
</tr>
<tr>
<td></td>
<td>endpoint type</td>
<td>com.vmware.vapi.endpoint</td>
</tr>
<tr>
<td>vCenter Server</td>
<td>product namespace</td>
<td>com.vmware.cis</td>
</tr>
<tr>
<td></td>
<td>service type</td>
<td>vcenterserver</td>
</tr>
<tr>
<td></td>
<td>protocol</td>
<td>vmomi</td>
</tr>
<tr>
<td></td>
<td>endpoint type</td>
<td>com.vmware.vim</td>
</tr>
<tr>
<td>vCenter Storage Monitoring Service</td>
<td>product namespace</td>
<td>com.vmware.vim.sms</td>
</tr>
<tr>
<td></td>
<td>service type</td>
<td>sms</td>
</tr>
<tr>
<td></td>
<td>protocol</td>
<td>https</td>
</tr>
<tr>
<td></td>
<td>endpoint type</td>
<td>com.vmware.vim.sms</td>
</tr>
<tr>
<td>vCenter Storage Policy-Based Management</td>
<td>product namespace</td>
<td>com.vmware.vim.sms</td>
</tr>
<tr>
<td></td>
<td>service type</td>
<td>sms</td>
</tr>
<tr>
<td></td>
<td>protocol</td>
<td>https</td>
</tr>
<tr>
<td></td>
<td>endpoint type</td>
<td>com.vmware.vim.pbm</td>
</tr>
<tr>
<td>vSphere ESX Agent Manager</td>
<td>product namespace</td>
<td>com.vmware.vim.sms</td>
</tr>
<tr>
<td></td>
<td>service type</td>
<td>cs.eam</td>
</tr>
<tr>
<td></td>
<td>protocol</td>
<td>vmomi</td>
</tr>
<tr>
<td></td>
<td>endpoint type</td>
<td>com.vmware.cis.cs.eam.sdk</td>
</tr>
</tbody>
</table>

Connect to the Lookup Service and Retrieve the Service Registration Object

You must connect to the Lookup Service to gain access to its operations. After you connect to the Lookup Service, you must retrieve the service registration object to make registration queries.
Java Example of Connecting to the Lookup Service and Retrieving the Service Registration Object
The example is based on the code in the LookupServiceHelper.java sample file.

.NET Example of Connecting to the Lookup Service and Retrieving a Service Registration Object
The example is based on the code from the LookupServiceHelper.cs sample file.

Python Example of Connecting to the Lookup Service and Retrieving a Service Registration Object
The example is based on the code from the lookup_service_helper.py sample file.

Procedure
1 Connect to the Lookup Service.
 a Configure a connection stub for the Lookup Service endpoint, which uses SOAP bindings, by using the HTTPS protocol.
 b Create a connection object to communicate with the Lookup Service.
2 Retrieve the Service Registration Object.
 a Create a managed object reference to the Service Instance.
 b Invoke the RetrieveServiceContent() method to retrieve the ServiceContent data object.
 c Save the managed object reference to the service registration object.

 With the service registration object, you can make registration queries.

Java Example of Connecting to the Lookup Service and Retrieving the Service Registration Object
The example is based on the code in the LookupServiceHelper.java sample file.

This example uses the steps that are described in the Connect to the Lookup Service and Retrieve the Service Registration Object procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

Note The connection code in the example disables certificate and host name checking for the connection for simplicity. For a production deployment, supply appropriate handlers. See the SDK sample file for a more detailed example of connection code.

```java
String lookupServiceUrl;
LsService lookupService;
LsPortType lsPort;
ManagedObjectReference serviceInstanceRef;
LookupServiceContent lookupServiceContent;
ManagedObjectReference serviceRegistration;

//1 - Configure Lookup Service stub.
```
HostnameVerifier hostVerifier = new HostnameVerifier(){
 public boolean verify(String urlHostName, SSLSession session){
 return true;
 }
};

HttpsURLConnection.setDefaultHostnameVerifier(hostVerifier);
SslUtil.trustAllHttpsCertificates();

//2 - Create the Lookup Service stub.
lookupService = new LsService();
lsPort = new LsPortType.getLsPort();
((BindingProvider)lsProvider).getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
lookupServiceUrl);

//4 - Create a predetermined management object.
serviceInstanceRef = new ManagedObjectReference();
 serviceInstanceRef.setType("LookupServiceInstance");
 serviceInstanceRef.setValue("ServiceInstance");

//5 - Retrieve the ServiceContent object.
lookupServiceContent = lsPort.retrieveServiceContent(serviceInstanceRef);

//6 - Retrieve the service registration
 serviceRegistration = lookupServiceContent.getServiceRegistration();

...
var address = new EndpointAddress(lsUrl);

// 3 - Create a connection object to communicate with the Lookup Service.
lsPort = new LsPortTypeClient(customBinding, address);

// 4 - Manufacture a managed object reference.
var serviceInstanceRef = new ManagedObjectReference();
serviceInstanceRef.type = "LookupServiceInstance";
serviceInstanceRef.Value = "ServiceInstance";

// 5 - Retrieve the ServiceContent managed object.
serviceContent = lsPort.RetrieveServiceContent(serviceInstanceRef);

// 6 - Retrieve the service registration object.
serviceRegistration = serviceContent.serviceRegistration;

Python Example of Connecting to the Lookup Service and
Retrieving a Service Registration Object

The example is based on the code from the lookup_service_helper.py sample file.

This example uses the steps that are described in the Connect to the Lookup Service and Retrieve the
Service Registration Object procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK
Python samples at GitHub.

...

1 - Create SOAP client object to communicate with the Lookup Service.
my_ls_stub = Client(url=wsdl_url, location=ls_url)

2 - Configure service & port type for client transaction.
my_ls_stub.set_options(service='LsService', port='LsPort')

3 - Manufacture a managed object reference.
managed_object_ref = \n my_ls_stub.factory.create('ns0:ManagedObjectReference')
managed_object_ref._type = 'LookupServiceInstance'
managed_object_ref.value = 'ServiceInstance'

4 - Retrieve the ServiceContent object.
ls_service_content = \n my_ls_stub.service.RetrieveServiceContent(managed_object_ref)

5 - Retrieve the service registration object.
service_registration = ls_service_content.serviceRegistration
Retrieve Service Endpoints on vCenter Server Instances

You can create a function that obtains the endpoint URLs of a service on all vCenter Server instances in the environment. You can modify that function to obtain the endpoint URL of a service on a particular vCenter Server instance.

Prerequisites

- Verify that you have created a content library.
- Verify that you have established a connection with the Lookup Service.
- Verify that you have retrieved a service registration object.

Procedure

1. Create a registration filter object, which contains the following parts:
 - A filter criterion for service information
 - A filter criterion for endpoint information

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omit the node ID parameter</td>
<td>Retrieves the endpoint URLs of the service on all vCenter Server instances.</td>
</tr>
<tr>
<td>Include the node ID parameter</td>
<td>Retrieves the endpoint URL of the service on a particular vCenter Server instance.</td>
</tr>
</tbody>
</table>

2. Retrieve the specified service information by using the List() function.

Depending on whether you included the node ID parameter, the List() function returns one of the following results:

- A list of endpoint URLs for a service that is hosted on all vCenter Server instances in the environment.
- An endpoint URL of a service that runs on a particular vCenter Server instance.

What to do next

Call the function that you implemented to retrieve service endpoints. You can pass different filter parameters depending on the service endpoints that you need. For more information, see Filter Parameters for Predefined Service Endpoints.

To retrieve a service endpoint on a particular vCenter Server instance, you must retrieve the node ID of that instance and pass it to the function. For information about how to retrieve the ID of a vCenter Server instance, see Retrieve a vCenter Server ID by Using the Lookup Service.
Java Example of Retrieving a Service Endpoint on a vCenter Server Instance

This example provides a common pattern for filtering Lookup Service registration data. This example is based on the code in the LookupServiceHelper.java sample file.

This example uses the steps that are described in the Retrieve Service Endpoints on vCenter Server Instances procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
/**
 * Define filter criterion for retrieving a service endpoint.
 * Omit the nodeID parameter to retrieve the endpoints hosted
 * on all vCenter Server instances in the environment.
 */

List<LookupServiceRegistrationInfo> lookupServiceUrls(String prod,
            String svcType,
            String proto,
            String epType,
            String nodeID){
    LookupServiceRegistrationServiceType filterServiceType =
        new LookupServiceRegistrationServiceType();
    filterServiceType.setProduct(prod);
    filterServiceType.setType(svcType);

    LookupServiceRegistrationEndpointType filterEndpointType =
        new LookupServiceRegistrationEndpointType();
    filterEndpointType.setProtocol(proto);
    filterEndpointType.setType(epType);

    LookupServiceRegistrationFilter filterCriteria = new LookupServiceRegistrationFilter();
    filterCriteria.setServiceType(filterServiceType);
    filterCriteria.setEndpointType(filterEndpointType);
    filterCriteria.setNode(nodeID);

    return lsPort.list(serviceRegistration, filterCriteria);
}
```
.NET Example of Retrieving a Service Endpoint on a vCenter Server Instance

This example provides a common pattern for filtering Lookup Service registration data. This example is based on the code in the LookupServiceHelper.cs sample file.

This example uses the steps that are described in the Retrieve Service Endpoints on vCenter Server Instances procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
public LookupServiceRegistrationInfo[] LookupSingleServiceUrl(string prod,
    string sType,
    string proto,
    string eType,
    string nodeId)
{
    // 1 - Create a filter criterion for service info.
    var filterServiceType = new LookupServiceRegistrationServiceType();
    filterServiceType.product = prod;
    filterServiceType.type = sType;

    // 2 - Create a filter criterion for endpoint info.
    var filterEndpointType = new LookupServiceRegistrationEndpointType();
    filterEndpointType.protocol = proto;
    filterEndpointType.type = eType;

    // 3 - Create the registration filter object.
    var filterCriteria = new LookupServiceRegistrationFilter();
    filterCriteria.serviceType = filterServiceType;
    filterCriteria.endpointType = filterEndpointType;
    filterCriteria.nodeId = nodeId;

    // 4 - Retrieve specified service info with the List() method.
    return lsPort.List(serviceRegistration, filterCriteria);
}
```

Python Example of Retrieving a Service Endpoint on a vCenter Server Instance

This example provides a common pattern for filtering Lookup Service registration data. This example is based on the code in the lookup_service_helper.py sample file.
This example uses the steps that are described in the Retrieve Service Endpoints on vCenter Server Instances procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
def to_lookup_single_service_info(prod, svc_type, proto, ep_type, node_id):
    # 1 - Create a filter criterion for service info.
    filter_service_type = my_ls_stub.factory.create('ns0:LookupServiceRegistrationServiceType')
    filter_service_type.product = prod
    filter_service_type.type = svc_type

    # 2 - Create a filter criterion for endpoint info.
    filter_endpoint_type = my_ls_stub.factory.create('ns0:LookupServiceRegistrationEndpointType')
    filter_endpoint_type.protocol = proto
    filter_endpoint_type.type = ep_type

    # 3 - Create the registration filter object.
    filter_criteria = my_ls_stub.factory.create('ns0:LookupServiceRegistrationFilter')
    filter_criteria.serviceType = filter_service_type
    filter_criteria.endpointType = filter_endpoint_type
    filter_criteria.nodeId = node_id

    # 4 - Retrieve specified service info with the List() method.
    service_infos = my_ls_stub.service.List(service_registration, filter_criteria)
    return service_infos
```

Perl Example of Retrieving a Service Endpoint from Multiple vCenter Server instances

This example provides a common pattern for filtering Lookup Service registration data. This example is based on the code from the external_psc_sso_workflow.pl sample file.

This example uses the steps that are described in the Retrieve Service Endpoints on vCenter Server Instances procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
use LWP::UserAgent;
use HTTP::Request;
use HTTP::Headers;
use XML::LibXML;

# Use this to set HTTP header info.
```
sub byte_length
{
 my ($string) = @_;
 use bytes;
 return length($string);
}

sub lookup_service_infos
{
 # Uses global $my_ls_url.
 # Accepts a node_id string or '*' to search all nodes.
 my $prod = shift;
 my $svc_type = shift;
 my $proto = shift;
 my $ep_type = shift;
 my $node_id = shift || 'x';
 # Format SOAP XML for List request.
 my $node_element = ($node_id eq '*' ? '' : "<nodeId>$node_id</nodeId>");
 my $soap_message = "<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <List xmlns="urn:lookup">
 <_this type="LookupServiceRegistration">ServiceRegistration</_this>
 <filterCriteria>
 $node_element
 <serviceType>
 <product>$prod</product>
 <type>$svc_type</type>
 </serviceType>
 <endpointType>
 <protocol>$proto</protocol>
 <type>$ep_type</type>
 </endpointType>
 </filterCriteria>
 </List>
 </S:Body>
 </S:Envelope>");

 # Send HTTP request.
 my $user_agent = LWP::UserAgent->new(
 agent => 'viperl',
 ssl_opts => {verify_hostname=>0});
 my $http_header = HTTP::Headers->new(
 Content_Type => 'text/xml',
 SOAPAction => 'urn:lookup/2.0',
 Content_Length => byte_length($soap_message));
 my $http_request = HTTP::Request->new('POST',
 $my_ls_url,
 $http_header,
 $soap_message);
 my $response = $user_agent->request($http_request);
Retrieve a vCenter Server ID by Using the Lookup Service

You use the node ID of a vCenter Server instance to retrieve the endpoint URL of a service on that vCenter Server instance. You specify the node ID in the service registration filter that you pass to the List() function on the Lookup Service.

Managed services are registered with the instance name of the vCenter Server instance where they run. The instance name maps to a unique vCenter Server ID. The instance name of a vCenter Server system is specified during installation and might be an FQDN or an IP address.

Prerequisites

- Verify that you have created a content library.
- Verify that you have established a connection with the Lookup Service.
- Verify that you have retrieved a service registration object.

Procedure

1. List the vCenter Server instances.
2. Find the matching node name of the vCenter Server instance and save the ID.

Use the node ID of the vCenter Server instance to filter subsequent endpoint requests. You can use the node ID in a function that retrieves the endpoint URL of a service on a vCenter Server instance. For information about implementing such a function, see Retrieve Service Endpoints on vCenter Server Instances.

Java Example of Retrieving a vCenter Server ID by Using the Lookup Service

This example is based on the in the LookupServiceHelper.java sample file.
This example uses the steps that are described in the Retrieve a vCenter Server ID by Using the Lookup Service procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...

public String getMgmtNodeId(String targetNodeName)
{
    // 1 - List the vCenter Server instances.
    List<LookupServiceRegistrationInfo> serviceInfos =
        lookupServiceUrls("com.vmware.cis",
                        "vcenterserver",
                        "vmomi",
                        "com.vmware.vim");

    // 2 - Find the matching node name and save the ID.
    for (LookupServiceRegistrationInfo serviceInfo : serviceInfos) {
        for (LookupServiceRegistrationAttribute serviceAtttr : serviceInfo.getServiceAttributes()) {
            if ("com.vmware.vim.vcenter.instanceName".equals(serviceAtttr.getKey())) {
                if (serviceAtttr.getValue().equals(targetNodeName)) {
                    return serviceInfo.getNodeId();
                }
            }
        }
    }

    ...
```

.NET Example of Retrieving a vCenter Server ID by Using the Lookup Service

This example provides a common pattern for filtering Lookup Service registration data. This example is based on the code in the `LookupServiceHelper.cs` sample file.

This example uses the steps that are described in the Retrieve a vCenter Server ID by Using the Lookup Service procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
...

public string getMgmtNodeId(string nodeInstanceName)
{
    // 1 - List the vCenter Server instances.
    var services = LookupServiceUrls("com.vmware.cis",
                                     "vcenterserver",
```
// 2 - Find the matching node name and save the ID.
foreach (var service in services)
{
 foreach (var serviceAttribute in service.serviceAttributes)
 {
 if (serviceAttribute.key.Equals("com.vmware.vim.vcenter.instanceName",
 StringComparison.CurrentCultureIgnoreCase) &&
 nodeInstanceName.Equals(serviceAttribute.value,
 StringComparison.CurrentCultureIgnoreCase))
 {
 return service.nodeId;
 }
 }
}

Python Example of Retrieving a vCenter Server ID by Using the Lookup Service

This example provides a common pattern for filtering Lookup Service registration data. This example is based on the code in the lookup_service_helper.py sample file.

This example uses the steps that are described in the Retrieve a vCenter Server ID by Using the Lookup Service procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
def get_mgmt_node_id(node_instance_name) :
    # 1 - List the vCenter Server instances.
    mgmt_node_infos = lookup_service_infos(prod='com.vmware.cis',
        svc_type='vcenterserver',
        proto='vmomi', ep_type='com.vmware.vim',
        node_id='*')

    # 2 - Find the matching node name and save the ID.
    for node in mgmt_node_infos :
        for attribute in node.serviceAttributes :
            if attribute.key == 'com.vmware.vim.vcenter.instanceName' :
                if attribute.value == node_instance_name :
                    return node.nodeId
```
Perl Example of Retrieving a vCenter Server ID By Using the Lookup Service

This example provides a common pattern for filtering Lookup Service registration data. When you need to find the node ID under which a vCenter Server is registered with the Platform Services Controller, this function accepts a node instance name and returns the node ID for future lookup requests.

This example uses the steps that are described in the Retrieve a vCenter Server ID by Using the Lookup Service procedure.

```perl
sub get_mgmt_node_id
{
    my $node_instance_name = shift;

    # 1 - List the vCenter Server instances.
    my @mgmt_node_infos = lookup_service_infos('com.vmware.cis',
        'vcenterserver',
        'vmomi',
        'com.vmware.vim',
        '*');

    # 2 - Find the matching node name and save the ID.
    for my $node (@mgmt_node_infos) {
        my @attrs = $node->{'serviceAttributes'};
        for my $attr (@attrs) {
            if ($attr->{'key'} == 'com.vmware.vim.vcenter.instanceName') {
                if ($attr->{'value'} == $node_instance_name) {
                    return $node->{'nodeId'};
                }
            }
        }
    }  # $attr
}  # $node
}  # get_mgmt_node_id()
```

Retrieve a vSphere Automation Endpoint on a vCenter Server Instance

Through the vSphere Automation Endpoint, you can access other vSphere Automation services that run on vCenter Server, such as Content Library and Tagging. To use a vSphere Automation service, you must retrieve the vSphere Automation Endpoint.

Prerequisites

- Verify that you have established a connection with the Lookup Service.
- Verify that you have retrieved a service registration object.
- Determine the node ID of the vCenter Server instance where the vSphere Automation service runs.
- Implement a function that retrieves the endpoint URL of a service on a vCenter Server instance.
Procedure

1. Invoke the function for retrieving the endpoint URL of a service on a vCenter Server instance by passing filter strings that are specific to the vSphere Automation endpoint.

2. Save the URL from the resulting single-element list.

Java Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance

This example is based on the in the LookupServiceHelper.java sample file.

This example uses the steps that are described in the Retrieve a vSphere Automation Endpoint on a vCenter Server Instance procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...
//1 - Determine management node ID.
String targetNodeId = getMgmtNodeId(targetNodeFqdn);

//2 - List filtered registration info.
List<LookupServiceRegistrationInfo> results =
    lookupSingleServiceUrl("com.vmware.cis",
        "cs.vapi",
        "vapi.json.https.public",
        "com.vmware.vapi.endpoint",
        targetNodeId);

//3 - Extract endpoint URL from registration info.
LookupServiceRegistrationInfo registrationInfo = results.get(0);
LookupServiceRegistrationEndpoint serviceEndpoint = registrationInfo.getServiceEndpoints().get(0);
String ssoUrl = serviceEndpoint.getUrl();
...
```

.NET Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance

This example provides a common pattern for filtering Lookup Service registration data. This example is based on the code in the LookupServiceHelper.cs sample file.
This example uses the steps that are described in the Retrieve a vSphere Automation Endpoint on a vCenter Server Instance procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
targetNodeId = getMgmtNodeId(target_node_fqdn)
var serviceInfo = LookupSingleServiceUrl("com.vmware.cis",
    "cs.vapi",
    "vapi.json.https",
    "com.vmware.vapi.endpoint",
    targetNodeId);
var vapiUrl = serviceInfo[0].serviceEndpoints[0].url;
```

Python Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance

This example provides a common pattern for filtering Lookup Service registration data. This example is based on the code in the lookup_service_helper.py sample file.

This example uses the steps that are described in the Retrieve a vSphere Automation Endpoint on a vCenter Server Instance procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
service_infos = lookup_service_infos(prod='com.vmware.cis',
    svc_type='cs.vapi',
    proto='vapi.json.https.public',
    ep_type='com.vmware.vapi.endpoint',
    node_id=my_mgmt_node_id)
my_vapi_url = service_infos[0].serviceEndpoints[0].url
```

Perl Example of Retrieving a vSphere Automation Endpoint on a vCenter Server Instance

This example provides a common pattern for filtering Lookup Service registration data.

This example uses the steps that are described in the Retrieve a vSphere Automation Endpoint on a vCenter Server Instance procedure.

```perl
my @service_infos = lookup_service_infos('com.vmware.cis',
    'cs.vapi',
    'vapi.json.https.public',
    'com.vmware.vapi.endpoint',
)
$my_mgmt_node_id);
my $ep = shift @service_infos;
my $url_element = $ep->getChildrenByTagName('url')->shift;
$my_vapi_url = $url_element->textContent;
To perform operations on services in the vSphere environment, you must create an authenticated connection to the services that you want to use. With the vSphere Automation SDKs you can authenticate and access vSphere Automation services.

Client applications can choose from two supported authentication patterns for accessing services in the virtual environment.

For better security, client applications can request a security token to authenticate connections with the vSphere Automation services.

To invoke operations on services, client applications must create a security context. The security context represents the client authentication. You can achieve authentication by using one of the following mechanisms.

**Password-Based Authentication**

To authenticate with user name and password, you connect to the vSphere Automation Endpoint with vCenter Single Sign-On user credentials and obtain a session identifier (ID). The user account credentials are validated by the vSphere Automation Endpoint, and must be present in the vCenter Single Sign-On identity store. The session ID is valid only for the service endpoint that you want to access and that issues the session ID.

**Token-Based Authentication**

Client applications can authenticate by using the vCenter Single Sign-On component on the Platform Services Controller. vCenter Single Sign-On includes the Security Token Service (STS) that issues security tokens. The token must comply with the Security Assertion Markup Language (SAML) specification, which defines an XML-based encoding for communicating authentication data.

vCenter Single Sign-On supports two types of security tokens: bearer token and Holder-of-Key (HoK) token. To acquire a SAML token, client applications must issue a token request to vCenter Single Sign-On.

Client applications can present a SAML token to the vSphere Automation Endpoint in exchange for a session identifier with which they can perform a series of authenticated operations.
To retrieve a session ID for the vSphere Web Services endpoint, you provide the SAML token to the vSphere Web services endpoint. For more information about creating an authenticated session to access the vSphere Web Services, see the vSphere Web Services SDK Programming Guide documentation.

This chapter includes the following topics:

- Retrieve a SAML Token
- Create a vSphere Automation Session with a SAML Token
- Create a vSphere Automation Session with User Credentials
- Create a Web Services Session

Retrieve a SAML Token

The vCenter Single Sign-On service provides authentication mechanisms for securing the operations that your client application performs in the virtual environment. Client applications use SAML security tokens for authentication.

Client applications use the vCenter Single Sign-On service to retrieve SAML tokens. For more information about how to acquire a SAML security token, see the vCenter Single Sign-On Programming Guide documentation.

Prerequisites

Verify that you have the vCenter Single Sign-On URL. You can use the Lookup Service on the Platform Services Controller to obtain the endpoint URL. For information about retrieving service endpoints, see Chapter 4 Retrieving Service Endpoints.

Procedure

1. Create a connection object to communicate with the vCenter Single Sign-On service.
   
   Pass the vCenter Single Sign-On endpoint URL, which you can get from the Lookup Service.

2. Issue a security token request by sending valid user credentials to the vCenter Single Sign-On service on the Platform Services Controller.

The vCenter Single Sign-On service returns a SAML token.

What to do next

You can present the SAML token to the vSphere Automation API Endpoint or other endpoints, such as the vSphere Web Services Endpoint. The endpoint returns a session ID and establishes a persistent session with that endpoint. Each endpoint that you connect to uses your SAML token to create its own session.

Java Example of Retrieving a SAML Token

The example is based on the code in the ExternalPscSsoWorkflow.java sample.
This example uses the steps that are described in the Retrieve a SAML Token procedure.

**Note** For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
LookupServiceHelper lookupServiceHelper = new LookupServiceHelper(
 this.lookupServiceUrl);
System.out.println("\nStep 2: Discover the Single Sign-On service URL" + " from lookup service.");
String ssoUrl = lookupServiceHelper.findSsoUrl();
System.out.println("\nStep 3: Connect to the Single Sign-On URL and " + "retrieve the SAML bearer token.");
SamlToken samlBearerToken = SsoHelper.getSamlBearerToken(ssoUrl, username, password);
```

**.NET Example of Retrieving a SAML Token**

The example is based on the code in the `ExternalPscSsoWorkflow.cs` sample file.

This example uses the steps that are described in the Retrieve a SAML Token procedure.

**Note** For a complete and up-to-date version of the sample code, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
LookupServiceHelper lookupServiceHelper = new LookupServiceHelper(
 this.lookupServiceUrl);
System.out.println("\nStep 2: Discover the Single Sign-On service URL" + " from lookup service.");
String ssoUrl = lookupServiceHelper.FindSsoUrl();
System.out.println("\nStep 3: Connect to the Single Sign-On URL and " + "retrieve the SAML bearer token.");
SamlToken samlBearerToken = SsoHelper.GetSamlBearerToken(ssoUrl, UserName, Password);
```

**Python Example of Retrieving a SAML Token**

This example is based on the code in the `external_psc_sso_workflow.py` sample file.

This example uses the steps that are described in the Retrieve a SAML Token procedure.

This example uses the following global variables.

- `my_vapi_hostname`
- `my_sso_username`
Note  For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
from vsphere.samples.common import sso

Use the SsoAuthenticator utility class to retrieve
a bearer SAML token from the vCenter Single Sign-On service.
authenticator = sso.SsoAuthenticator(sso_url)
saml_token = authenticator.get_bearer_saml_assertion(my_sso_username,
 my_sso_password,
 delegatable=True)
```

Perl Example of Retrieving a SAML Token

This example is based on the code in the external_psc_sso_workflow.pl sample file.

This example uses the steps that are described in the Retrieve a SAML Token procedure.

Note  For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
my $ssoConnection = new VMware::SSOConnection('sso_url' => $sso_url);
$ssoConnection->get_bearer_saml_token(
 'user_name' => $params{'username'},
 'password' => $params{'password'}
);
my $token = $ssoConnection->get_token();
```

Create a vSphere Automation Session with a SAML Token

To establish a vSphere Automation session, you create a connection to the vSphere Automation API Endpoint and then you authenticate with a SAML token to create a session for the connection.

Prerequisites

- Retrieve the vSphere Automation Endpoint URL from the Lookup Service.
- Obtain a SAML token from the vCenter Single Sign-On service.

Procedure

1. Create a connection by specifying the vSphere Automation API Endpoint URL and the message protocol to be used for the connection.

   Note  To transmit your requests securely, use https for the vSphere Automation API Endpoint URL.
Create the request options or stub configuration and set the security context to be used.

The security context object contains the SAML token retrieved from the vCenter Single Sign-On service. Optionally, the security context might contain the private key of the client application.

Create an interface stub or a REST path that uses the stub configuration instance.

The interface stub corresponds to the interface containing the method to be invoked.

Invoke the session create method.

The service creates an authenticated session and returns a session identification cookie to the client.

Create a security context instance and add the session ID to it.

Update the stub configuration instance with the session security context.

What to do next

Use the updated stub configuration with the session ID to create a stub for the interface that you want to use. Method calls on the new stub use the session ID to authenticate.

Java Example of Creating a vSphere Automation API Session with a SAML Token

This example is based on the code in the ExternalPscSsoWorkflow.java sample.

This example uses the steps that are described in the Create a vSphere Automation Session with a SAML Token

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...
this.stubFactory = createApiStubFactory(server, httpConfig);

// Create a SAML security context using SAML bearer token
SecurityContext samlSecurityContext = SecurityContextFactory.createSamlSecurityContext(samlBearerToken, null);

// Create a stub configuration with SAML security context
StubConfiguration stubConfig = new StubConfiguration(samlSecurityContext);

// Create a session stub using the stub configuration.
Session session = this.stubFactory.createStub(Session.class, stubConfig);

// Log in and create a session
char[] sessionId = session.create();

// Initialize a session security context from the generated session id
```
SessionSecurityContext sessionSecurityContext =
        new SessionSecurityContext(sessionId);

// Update the stub configuration to use the session id
stubConfig.setSecurityContext(sessionSecurityContext);

/*
 * Create a stub for the session service using the authenticated
 * session
 */
this.sessionSvc =
        this.stubFactory.createStub(Session.class, stubConfig);

VM vmService = this.stubFactory.createStub(VM.class, stubConfig);

---

.NET Example of Creating a vSphere Automation API Session with a SAML Token

This example is based on code in the ExternalPscSsoWorkflow.cs sample file.

This example uses the steps that are described in the Create a vSphere Automation Session with a SAML Token

**Note** For a complete and up-to-date version of the sample code, see the vSphere Automation SDK .NET samples at GitHub.

```cpp
...

StubFactory = CreateApiStubFactory(server);

// Create a SAML security context using SAML bearer token
 samlBearerToken, null);

/*
 * Create a stub configuration with saml security
 * context
 */
StubConfiguration stubConfig = new StubConfiguration();
stubConfig.SetSecurityContext(samlSecurityContext);

// Create a session stub using the stub configuration.
Session session =
 StubFactory.CreateStub<Session>(stubConfig);

// Log in and create a session
char[] sessionId = session.Create();

/*
 * Initialize a session security context from the generated
 * session id
 */
SessionSecurityContext sessionSecurityContext =
 new SessionSecurityContext(sessionId);

// Update the stub configuration to use the session id
stubConfig.SetSecurityContext(sessionSecurityContext);

/*
 * Create a stub for the session service using the authenticated
 * session
 */
this.sessionSvc =
 StubFactory.CreateStub<Session>(stubConfig);

VM vmService = StubFactory.CreateStub<VM>(stubConfig);

Python Example of Creating a vSphere Automation API Session with a SAML Token

This example is based on code in the `external_psc_sso_workflow.py` sample file.

This example uses the steps that are described in the Create a vSphere Automation Session with a SAML Token

This example uses the following global variables.

- `my_vapi_hostname`
- `my_stub_config`
- `saml_token`

The example assumes that you previously obtained a vSphere Automation API URL from the Lookup Service, and a SAML token from the vCenter Single Sign-On Service.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
...

# Create a session object in the client.
session = requests.Session()

# For development environment only, suppress server certificate checking.
session.verify = False
from requests.packages.urllib3 import disable_warnings
from requests.packages.urllib3.exceptions import InsecureRequestWarning
disable_warnings(InsecureRequestWarning)

# Create a connection for the session.
vapi_url = 'https://' + my_vapi_hostname + '/api'
connector = get_requests_connector(session=session, url=vapi_url)

# Add SAML token security context to the connector.
```
Perl Example of Creating a vSphere Automation API Session with a SAML Token

This example is based on the code in the external_psc_sso_workflow.pl sample file.

This example uses the steps that are described in the Create a vSphere Automation Session with a SAML Token

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
# 1 - Create a stub configuration.
$my_stub_config = new Com::Vmware::Vapi::Bindings::StubConfiguration();

# 2 - Create a SAML token security context.
my $context_factory = new Com::Vmware::Vapi::Dsig::SecurityContextFactory();
my $saml_token_context = $context_factory->create_saml_security_context(
  'token'       => $my_saml_token,
  'private_key' => $my_private_key);

# 3 - Apply the token security context to the stub configuration.
$my_stub_config->set_security_context(
  security_context => $saml_token_context);

# 4 - Create a session stub, using the token security context.
my $protocol_factory =
  new Com::Vmware::Vapi::Protocol::ProtocolConnectionFactory();
$my_connection = $protocol_factory->get_connection(
  'protocol_type' => 'https',
  'url'           => "$my_vapi_url/api");
$my_stub_factory =
  new Com::Vmware::Vapi::Bindings::StubFactory(
    'api_provider' => $my_connection->get_api_provider());
```
Create a vSphere Automation Session with User Credentials

With the vSphere Automation SDKs, you can create authenticated sessions by using only user credentials.

You connect to the vSphere Automation Endpoint by using a user name and password known to the vCenter Single Sign-On service. The vSphere Automation uses your credentials to authenticate with the vCenter Single Sign-On Service and obtain a SAML token.

Prerequisites

- Retrieve the vSphere Automation Endpoint URL from the Lookup Service.
- Verify that you have valid user credentials for the vCenter Single Sign-On identity store.

Procedure

1. Create a connection stub by specifying the vSphere Automation Endpoint URL and the message protocol to be used for the connection.

2. Create a stub configuration instance and set the specific security context to be used.

 The security context object uses the user name and password that are used for authenticating to the vCenter Single Sign-On service.

3. Create a Session stub that uses the stub configuration instance.

4. Call the create operation on the Session stub to create an authenticated session to the vSphere Automation Endpoint.

 The operation returns a session identifier.

5. Create a security context instance and add the session ID to it.

6. Update the stub configuration instance with the session security context.
What to do next

You can use the authenticated session to access vSphere Automation services. For more information about creating stubs to the vSphere Automation services, see Chapter 6 Accessing vSphere Automation Services.

Java Example of Creating a vSphere Automation API Session with User Credentials

This example is based on the code in the VapiAuthenticationHelper.java sample.

This example uses the steps that are described in the Create a vSphere Automation Session with User Credentials procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
... 

this.stubFactory = createApiStubFactory(server, httpConfig);

// Create a security context for username/password authentication
SecurityContext securityContext =
    SecurityContextFactory.createUserPassSecurityContext(
        username, password.toCharArray());

// Create a stub configuration with username/password security context
StubConfiguration stubConfig = new StubConfiguration(securityContext);

// Create a session stub using the stub configuration.
Session session =
    this.stubFactory.createStub(Session.class, stubConfig);

// Login and create a session
char[] sessionId = session.create();

// Initialize a session security context from the generated session id
SessionSecurityContext sessionSecurityContext =
    new SessionSecurityContext(sessionId);

// Update the stub configuration to use the session id
stubConfig.setSecurityContext(sessionSecurityContext);

/*
 * Create a stub for the session service using the authenticated
 * session
 */
this.sessionSvc =
    this.stubFactory.createStub(Session.class, stubConfig);

VM vmService = this.stubFactory.createStub(VM.class, stubConfig);
```
Create a Web Services Session

To develop a complex workflow, you might need to send requests to vSphere Web Services running in your virtual environment. To achieve this, you access the vSphere Web Services API by using the Web Services endpoint.

The vSphere Web Services API also supports session-based access. To establish an authenticated session, you can send the SAML token retrieved from the vCenter Single Sign-On service to a vSphere Web Service. In return, you receive a session identifier that you can use to access the service. For more information about accessing Web Services and additional examples, see the vSphere Web Services SDK Programming Guide documentation.

The vSphere Automation SDK for Python supports a simplified way of creating connections to the Web Services API by using the pyVim library.

Prerequisites

- Retrieve the vSphere Web Services endpoint URL from the Lookup Service.
- Obtain a SAML token from the vCenter Single Sign-On service.

Procedure

1. Connect to the vSphere Web Services endpoint.
2. Send the SAML token to a specific Web service to create an authenticated session.
3. Add the retrieved session ID to the service content object.

 The Service Content object gives you access to several server-side managed objects that represent vSphere services and components.

Python Example of Creating a Web Services Session

This example is based on code in the service_manager.py sample file.

This example uses the steps that are described in the Create a Web Services Session procedure.

This example uses the following global variables.

- my_ws_url
- my_sso_username
- my_sso_password
The `my_ws_url` variable represents the URL of the vCenter Server Web Services API endpoint. You can retrieve the endpoint URL from the Lookup Service.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
...
# Extract the hostname from the endpoint URL.
url_scheme, url_host, url_path, url_params, url_query, url_fragment = 
    urlparse(my_ws_url)
pattern = '(?P<host>[^:/ \ ]+).?(?P<port>[0-9]*)'  # Regex pattern
match = re.search(pattern, url_host)
host_name = match.group('host')

# Invoke the SmartConnect() method by supplying
# the host name, user name, and password.
service_instance_stub = SmartConnect(host=host_name,
                                    user=my_sso_username,
                                    pwd=my_sso_password)

# Retrieve the service content.
service_content = service_instance_stub.RetrieveContent()
```

Perl Example of Creating a Web Services Session

This example is based on the code in the SampleBase.pm sample file.

This example uses the steps that are described in the Create a Web Services Session procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
...
# Create a session using the vSphere Automation SDK for Perl connection utility.
Util::connect($my_vcenter_url, $username, $password);
```
Accessing vSphere Automation Services

vSphere Automation SDK provides mechanisms for creating remote stubs to give clients access to vSphere Automation services.

The sequence of tasks you must follow to create a remote stub starts with creating a ProtocolFactory. You use the protocol factory object to create a ProtocolConnection. Connection objects provide the basis for creating stub interfaces to vSphere Automation services.

When you establish a connection to the vSphere Automation Endpoint, you can create a StubFactory object and a StubConfiguration object. With these objects, you can create the remote stub for the vSphere Automation service that you want to access.

The complete connection sequence also includes SSL truststore support and a temporary StubConfiguration that you use for SAML token authentication and session creation.

SSL Handshake

The vSphere Automation Endpoint (https://host/api) is an SSL-enabled service that requires client authentication during login. The SSL connection relies on certificate verification supported by the Java security architecture. The Java security architecture defines truststores for SSL connections. A truststore contains vCenter Single Sign-On credentials. You use a truststore to verify credentials from a vCenter Server instance.

The vSphere Automation SDK for Java includes an SSL utility sample code that supports the creation of a truststore for the HTTP connection, com.vmware.vcloud.suite.samples.common.SslUtil.

Note The vSphere Automation SDK for Java SSL utility creates an instance of the Java security certificate class X509TrustManager. This instance declares an override client-side method, checkServerTrusted, that accepts all HTTPS certificates. This method is suitable only for development environments. For a production environment, do not use the X509TrustManager override methods. Instead, set up a truststore for use by the default X509TrustManager implementation.
For greater security, use an external utility to create a certificate store:

```bash
keytool -import -noprompt -trustcacerts
   -alias <alias name> \
   -file <certificate file> \n   -keystore <truststore filename> \n   -storepass <truststore password>
```

Access a vSphere Automation Service

To access a vSphere Automation service, you must have a valid session connection. The sequence for accessing a vSphere Automation service includes creating a protocol connection object and using it to create the service stub.

Prerequisites

Establish a connection to the vSphere Automation Endpoint URL. For more information about the authentication mechanisms that you can use, see Chapter 5 Authentication Mechanisms.

Procedure

1. Create a protocol factory object.
2. Create a protocol connection object to access an API provider.

 The vSphere Automation API clients use ApiProvider instances to invoke operations on services running in the virtual environment. To invoke an operation, you must specify the target service and operation, input parameters, and execution context.
3. Create a StubFactory object by using the ApiProvider instance.
4. Create a StubConfiguration instance and set the security context to be used for the service stub.
5. Create the stub for the vSphere Automation service interface by calling the create method of the StubFactory instance. Pass the service class and the StubConfiguration instance as arguments.

Java Example of Accessing a vSphere Automation Service

The example is based on the code in the `LibraryCrud.java` sample.

This example shows the steps for creating an authenticated session to the vSphere Automation Endpoint and creating the service stub for the Content Library API provider.

This example uses the steps described in the **Access a vSphere Automation Service** procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...  
// Log in by using username/password
   this.stubFactory = createApiStubFactory(server, httpConfig);
```
// Create a security context for username/password authentication
SecurityContext securityContext =
 SecurityContextFactory.createUserPassSecurityContext(
 username, password.toCharArray());

// Create a stub configuration with username/password security context
StubConfiguration stubConfig = new StubConfiguration(securityContext);

// Create a session stub by using the stub configuration.
Session session =
 this.stubFactory.createStub(Session.class, stubConfig);

// Log in and create a session
char[] sessionId = session.create();

// Initialize a session security context from the generated session id
SessionSecurityContext sessionSecurityContext =
 new SessionSecurityContext(sessionId);

// Update the stub configuration to use the session id
stubConfig.setSecurityContext(sessionSecurityContext);

/*
 * Create a stub for the session service using the authenticated
 * session
 */
this.sessionSvc =
 this.stubFactory.createStub(Session.class, stubConfig);

// Create service stubs for the Content Library service.
Library libraryService = stubFactory.createStub(Library.class, stubConfig);

// Invoke an operation of the Content Library service.
List<String> listContentLibraries = libraryService.list();
The Content Library Service provides means for managing content libraries in the context of a single or multiple vCenter Server instances deployed in your virtual environment. You can use the vSphere Automation APIs to access the Content Library Service through the vSphere Automation Endpoint.

Administrators can use content libraries to share VM templates, vApp templates, and other types of files across vCenter Server instances in the virtual environment. Sharing templates across your virtual environment promotes consistency, compliance, efficiency, and automation in deploying workloads at scale.

- **Content Library Overview**
 A content library instance represents a container for a set of library items. A content library item instance represents the logical object stored in the content library, which might be one or more usable files.

- **Querying Content Libraries**
 You can create queries to find libraries that match your criteria. You can also retrieve a list of all libraries or only the libraries of a specific type.

- **Content Libraries**
 The Content Library API provides services that allow you to create and manage content libraries programmatically. You can create a local library and publish it for the entire virtual environment. You can also subscribe to use the contents of a local library and enable automatic synchronization to ensure that you have the latest content.

- **Library Items**
 A library item groups multiple files within one logical unit. You can perform various tasks with the items in a content library.

Content Library Overview

A content library instance represents a container for a set of library items. A content library item instance represents the logical object stored in the content library, which might be one or more usable files.

- **Content Library Types**
 You can create two types of libraries, local and subscribed.
Content Library Items

Library items are VM templates, vApp templates, or other VMware objects that can be contained in a content library. VMs and vApps have several files, such as log files, disk files, memory files, and snapshot files that are part of a single library item. You can create library items in a specific local library or remove items from a local library. You can also upload files to an item in a local library so that the libraries subscribed to it can download the files to their NFS or SMB server, or datastore.

Content Library Storage

When you create a local library, you can store its contents on a datastore managed by the vCenter Server instance or on a remote file system.

Content Library Types

You can create two types of libraries, local and subscribed.

- You can create a local library as the source for content you want to save or share. Create the local library on a single vCenter Server instance. You can add items to a local library or remove them. You can publish a local library and as a result this content library service endpoint can be accessed by other vCenter Server instances in your virtual environment. When you publish a library, you can configure the authentication method, which a subscribed library must use to authenticate to it.

- You can create a subscribed library and populate its content by synchronizing to a local library. A subscribed library contains copies of the local library files or just the metadata of the library items. The local library can be located on the same vCenter Server instance as the subscribed library, or the subscribed library can reference a local library on a different vCenter Server instance. You cannot add library items to a subscribed library. You can only add items to the source library. After synchronization, both libraries will contain the same items.

Content Library Items

Library items are VM templates, vApp templates, or other VMware objects that can be contained in a content library. VMs and vApps have several files, such as log files, disk files, memory files, and snapshot files that are part of a single library item. You can create library items in a specific local library or remove items from a local library. You can also upload files to an item in a local library so that the libraries subscribed to it can download the files to their NFS or SMB server, or datastore.

For information about the tasks that you can perform by using the content library service, see Content Libraries.

Content Library Storage

When you create a local library, you can store its contents on a datastore managed by the vCenter Server instance or on a remote file system.

Depending on the type of storage that you have, you can use Virtual Machine File System (VMFS) or Network File System (NFS) for storing content on a datastore.
For storing content on a remote file system, you can enter the path to the NFS storage that is mounted on the Linux file system of the vCenter Server Appliance. For example, you can use the following URI formats: nfs://<server>/<path>?version=4 and nfs://<server>/<path>. If you have a vCenter Server instance that runs on a Windows machine, you can specify the Server Message Block (SMB) URI to the Windows shared folders that store the library content. For example, you can use the following URI format: smb://<unc-server>/<path>.

Java Example of Storing Library Content on a Datastore

This example is based on the code in the LibraryCrud.java sample file.

For more information about storing the contents of a local library, see Content Library Storage.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...

// Create a StorageBacking instance for storing the library content on a datastore.

    StorageBacking libraryBacking = new StorageBacking();
    libraryBacking.setType(Type.DATASTORE);

    /*
     * Pass the value of the datastore ManagedObjectReference.
     * See the vSphere Web Services SDK Programming Guide
     * and the vSphere Web Services SDK samples. In addition, the vSphere Automation SDK for Java provides
     * the VimUtil utility class in the vmware.samples.vim.helpers package.
     * You can use the utility to retrieve the ManagedObjectReference
     * of the datastore entity.
     */
    libraryBacking.setDatastoreId("datastore-123");

// Create a LibraryModel that represents a local library backed on a datastore.

    LibraryModel libraryModel = new LibraryModel();
    libraryModel.setName("AcmeLibrary");
    libraryModel.setDescription("Local library backed by VC datastore");
    libraryModel.setType(LibraryType.LOCAL);
    libraryModel.setStorageBackings(Collections.singletonList(libraryBacking));
```

.NET Example of Storing Library Content on a Datastore

This example shows how to define where the library content is stored.
For more information about storing the contents of a local library, see Content Library Storage.

Note For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

...

// Create a StorageBacking instance of datastore type.
var libraryBacking = new StorageBacking();
libraryBacking.SetType(vmware.content.library.StorageBacking.Type.DATASTORE);

// Provide the datastore ID.
libraryBacking.SetDatastoreId("datastore-123");

// Create a LibraryModel that represents a local library backed on a datastore.
var libraryModel = new LibraryModel();
libraryModel.SetName("AcmeLibrary");
libraryModel.SetStorageBackings(new List<StorageBacking>() { libraryBacking });

Python Example of Storing Library Content on a Datastore

This example is based on the code in the library_crud.py sample file.

For more information about storing the contents of a local library, see Content Library Storage.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

...

Create a StorageBacking instance of datastore type.
library_backing = library_client.StorageBacking()
library_backing.type = library_client.StorageBacking.Type.DATASTORE

Pass the value of the datastore managed object reference.
The vSphere Automation SDK for Python contains the GetDatastoreByName class, which sample resource is located in the
/client/samples/src/com/vmware/vcloud/suite/sample/vim/helpers/ directory.
You can use the utility to retrieve the managed object reference of the datastore entity.
library_backing.datastore_id = 'datastore-123'

Create a LibraryModel that represents a local library backed on a datastore.
library_model = content_client.LibraryModel()
library_model.name = 'AcmeLibrary'
library_model.storage_backings = [library_backing]

Perl Example of Storing Library Content on a Datastore

This example is based on the code in the library_crud.pl sample file.
For more information about storing the contents of a local library, see Content Library Storage.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
...

# Create a StorageBacking instance of datastore type.
my $library_backing = new Com::Vmware::Content::Library::StorageBacking();
$library_backing->set_type('type' => Com::Vmware::Content::Library::StorageBacking::Type::DATASTORE);

# Pass the value of the datastore managed object reference.
$library_backing->set_datastore_id('datastore_id' => 'datastore-123');
my $library_model = new Com::Vmware::Content::LibraryModel();
$library_model->set_name('name' => 'AcmeLibrary');
$library_model->set_storage_backings('storage_backings' => [$library_backing]);

...
```

Querying Content Libraries

You can create queries to find libraries that match your criteria. You can also retrieve a list of all libraries or only the libraries of a specific type.

- **Listing All Content Libraries**

 You can retrieve a list of all content library IDs in your virtual environment, regardless of their type, by using the Library service.

- **Listing Content Libraries of a Specific Type**

 You can use the vSphere Automation API to retrieve content libraries of a specific type. For example, you can list only the local libraries in your virtual environment.

- **List Content Libraries by Using Specific Search Criteria**

 You can filter the list of content libraries and retrieve only the libraries that match your specific criteria. For example, you might want to publish all local libraries with a specific name.

Listing All Content Libraries

You can retrieve a list of all content library IDs in your virtual environment, regardless of their type, by using the Library service.

You can use the list function to retrieve all local and subscribed libraries in your system.

Java Example of Retrieving a List of All Content Libraries

The example is based on the code in the ContentUpdate.java sample file.
This example uses the steps that are described in "Listing All Content Libraries."

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
// Access the Library Service.
Library libraryService = vapiAuthHelper.getStubFactory().createStub(Library.class,
sessionStubConfig);

// List all content libraries.
List<String> allLibraries = libraryService.list();
System.out.println("List of all library identifiers: /n");
for (String cl : allLibraries) {
    System.out.println(cl);
}
```

.NET Example of Retrieving a List of All Content Libraries

This example shows how you can retrieve a list of all local and subscribed content libraries in your virtual environment.

This example uses the steps that are described in "Listing All Content Libraries."

Note For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
... // Access the Library Service.
Library libraryService = ServiceManager.VapiConnection.GetService<Library>();

// List the visible content libraries.
Console.WriteLine("List of all library identifiers: ");
foreach (var libId in libraryService.List())
{
    Console.WriteLine(libId);
}
```

Python Example of Retrieving a List of All Content Libraries

This example is based on the code in the library_crud.py sample file.
This example uses the steps that are described in Listing All Content Libraries.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
library_stub = content_client.Library(my_stub_config)
libraries = library_stub.list()
print('List of all library identifiers:
for library_id in library_ids :
    library = library_stub.get(library_id)
    print('Library ID {}: {}'.format(library_id, library.name))
```

Perl Example of Retrieving a List of All Content Libraries

This example is based on the code in the `library_crud.pl` sample file.

This example uses the steps that are described in Listing All Content Libraries.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
# Create client stub for general library functions.
my $library_stub = $my_stub_factory->create_stub(
    'service_name' => 'Com::Vmware::Content::Library',
    'stub_config'  => $my_stub_config
);

# List content libraries.
my @library_ids = $library_stub->list();
foreach my $id (@library_ids) {
    my $library = $library_stub->get('library_id' => $id);
    my $name = $library->get_name();
    print "Library ID $id: $name";
}...```

### Listing Content Libraries of a Specific Type

You can use the vSphere Automation API to retrieve content libraries of a specific type. For example, you can list only the local libraries in your virtual environment.

If you want to retrieve only a list of the local libraries, you must retrieve the `LocalLibrary` service and use the `list` function on the `LocalLibrary` service. To list only subscribed libraries, you must retrieve the `SubscribedLibrary` service and call the `list` function on the `SubscribedLibrary` service.
List Content Libraries by Using Specific Search Criteria

You can filter the list of content libraries and retrieve only the libraries that match your specific criteria. For example, you might want to publish all local libraries with a specific name.

Prerequisites

Verify that you have access to the Library service.

Procedure

1. Create a FindSpec instance and specify your search criteria.
2. Call the find function on the Library service.

   All content libraries that match your search criteria are listed.

Java Example of Retrieving a List of All Local Libraries with a Specific Name

This example retrieves a list of all local libraries with the name AcmeLibrary that exist in your virtual environment.

Note For related code samples, see the vSphere Automation SDK Java samples at GitHub.

```java
// Create a FindSpec instance to set your search criteria.
FindSpec findSpec = new FindSpec();

// Filter the local content libraries by using a library name.
findSpec.setName("AcmeLibrary");
findSpec.setType(LibraryType.LOCAL);
List<String> ids = libraryService.find(findSpec);
```

.NET Example of Retrieving a List of All Local Libraries with a Specific Name

This example retrieves a list of all local libraries with the name AcmeLibrary that exist in your virtual environment.

Note For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
...

// Create a FindSpec instance to set your search criteria.
FindSpec findSpec = new vmware.content.LibraryTypes.FindSpec();

// Filter the visible content libraries by using a library name.
findSpec.setField("libraryName", "AcmeLibrary");
findSpec.setType(LibraryType.LOCAL);
List<String> ids = libraryService.find(findSpec);
```
findSpec.SetName("AcmeLibrary");
findSpec.SetType(vmware.content.LibraryModel.LibraryType.LOCAL)
List<String> libIds = libraryService.Find(findSpec);

Python Example of Retrieving a List of All Local Libraries with a Specific Name

This example retrieves a list of all local libraries with the name AcmeLibrary that exist in your virtual environment.

**Note** For related code samples, see the vSphere Automation SDK Python samples at GitHub.

...

# Create a FindSpec object to specify your search criteria.
find_spec = content_client.Library.FindSpec()
find_spec.name = 'AcmeLibrary'
find_spec.type = content_client.LibraryModel.LibraryType.LOCAL

# Invoke the find() function by using the FindSpec instance.
library_stub = content_client.Library(my_stub_config)
library_ids = library_stub.find(find_spec)

Perl Example of Retrieving a List of All Local Libraries with a Specific Name

This example retrieves a list of all local libraries with the name AcmeLibrary that exist in your virtual environment.

**Note** For related code samples, see the vSphere Automation SDK Perl samples at GitHub.

...

# Create a FindSpec object to specify your search criteria.
my $find_spec = new
Com::Vmware::Content::Library::FindSpec();
$find_spec->set_name('name' => 'AcmeLibrary');
$find_spec->set_type('type' =>
Com::Vmware::Content::LibraryModel::LibraryType::LOCAL);

# Create client stub for general library functions.
my $library_stub = $my_stub_factory->create_stub(
    'service_name' => 'Com::Vmware::Content::Library',
    'stub_config' => $my_stub_config
);

# List content libraries.
my @library_ids = $library_stub->find('spec' => $find_spec);
Content Libraries

The Content Library API provides services that allow you to create and manage content libraries programmatically. You can create a local library and publish it for the entire virtual environment. You can also subscribe to use the contents of a local library and enable automatic synchronization to ensure that you have the latest content.

- **Create a Local Content Library**
  You can create a local content library programmatically by using the vSphere Automation API. The API allows you to populate the content library with VM and vApp templates. You can use these templates to deploy virtual machines or vApps in your virtual environment.

- **Publish an Existing Content Library**
  To make the library content available for other vCenter Server instances across the vSphere Automation environment, you must publish the library. Depending on your workflow, select a method for publishing the local library. You can publish a local library that already exists in your vSphere Automation environment.

- **Publish a Library at the Time of Creation**
  You can publish a local library at the time of creation to enable other libraries to subscribe and use the library content.

- **Subscribe to a Content Library**
  You can subscribe to public content libraries. The source objects for a public content library can be: a library created on a vCenter Server 6.0 instance, a catalog created on a vCloud Director 5.5 instance, or a third-party library. When you subscribe to a library, you must specify the backing storage for the library content. You must also provide the correct user name and password if the library requires basic authentication.

- **Synchronize a Subscribed Content Library**
  When you subscribe to a published library, you can configure the settings for downloading and updating the library content.

- **Editing the Settings of a Content Library**
  You can update the settings of content library types in your virtual environment by using the vSphere Automation API.

- **Removing the Content of a Subscribed Library**
  You can free storage space in your virtual environment by removing the subscribed library content that you no longer need.

- **Delete a Content Library**
  When you no longer need a content library, you can invoke the delete method on either the LocalLibrary or the SubscribedLibrary service depending on the library type.
Create a Local Content Library

You can create a local content library programmatically by using the vSphere Automation API. The API allows you to populate the content library with VM and vApp templates. You can use these templates to deploy virtual machines or vApps in your virtual environment.

Procedure

1. Create a StorageBackIng instance and define the storage location.
2. Create a LibraryModel instance and set the properties of the new local library.
3. Access the LocalLibrary object which is part of the vSphere Automation API service interfaces.
4. Call the create function on the LocalLibrary object and pass the LibraryModel as a parameter.

Java Example of Creating a Local Library

This example is based on the code in the LibraryCrud.java sample file.

This example uses the steps that are described in the Create a Local Content Library procedure.

Note  For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

...  

```java
// Create a StorageBackIng instance to back the library content on the local file system.
 StorageBackIng libraryBacking = new StorageBackIng();
 libraryBacking.setType(Type.OTHER);
 libraryBacking.setStorageUri(URI.create("file:///tmp"));
 libraryModel.setStorageBackings(Collections.singletonList(libraryBacking));

// Create a LibraryModel that represents a local library.
 LibraryModel libraryModel = new LibraryModel();
 libraryModel.setType(LibraryModel.LibraryType.LOCAL);
 libraryModel.setName("AcmeLibrary");

// Access the LocalLibrary service by using the endpoint.
 LocalLibrary localLibraryService =
 this.vapiAuthHelper.getStubFactory().createStub(LocalLibrary.class, sessionStubconfig);

// Call the create method of the LocalLibrary service passing as an argument the LibraryModel instance.
 String libraryId = localLibraryService.create(UUID.randomUUID().toString(), libraryModel);
```

.NET Example of Creating a Local Content Library

This example creates a local library with name AcmeLibrary, which is stored on the local file system where vCenter Server runs.
This example uses the steps that are described in the Create a Local Content Library procedure.

**Note** For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
// Create a StorageBacking instance to back the library content on the local file system.
var libraryBacking = new StorageBacking();
libraryBacking.SetType(vmware.content.library.StorageBacking.Type.OTHER);
libraryBacking.SetStorageUri(new Uri("file:///tmp"));
libraryModel.SetStorageBackings(new List<StorageBacking>() { libraryBacking });

// Create a LibraryModel that represents a local library.
var libraryModel = new LibraryModel();
libraryModel.SetType(vmware.content.LibraryModel.LibraryType.LOCAL);
libraryModel.SetName("AcmeLibrary");

// Access the LocalLibrary service by using the vSphere Automation endpoint.
LocalLibrary localLibraryService = ServiceManager.VapiConnection.GetService<LocalLibrary>();

// Call the Create method of the LocalLibrary service
// passing the LibraryModel instance as an argument.
var libraryId = localLibraryService.Create(Guid.NewGuid().ToString(), libraryModel);
```

Python Example of Creating a Local Content Library

This example creates a local library with name AcmeLibrary, which is stored on the local file system where vCenter Server runs.

This example uses the steps that are described in the Create a Local Content Library procedure.

**Note** For related code samples, see the vSphere Automation SDK Python samples at GitHub.

```python
1 - Create a storage backing instance on a local file system.
library_backing = library_client.StorageBacking()
library_backing.type = library_client.StorageBacking.Type.OTHER
library_backing.storage_uri = 'file:///tmp'

2 - Create a Library model to specify properties of the new library.
library_model = content_client.LibraryModel()
library_model.type = content_client.LibraryModel.LibraryType.LOCAL
library_model.name = 'AcmeLibrary'
library_model.storage_backings = [library_backing]

3 - Call the create() method, passing the library model as a parameter.
```
Perl Example of Creating a Local Content Library

This example is based on the code in the library_crud.pl sample file.

This example uses the steps that are described in the Create a Local Content Library procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

...  

# 1 - Create a StorageBacking instance of OTHER type,  
#      backed by the vCenter Server file system.  
my $library_backing = new  
Com::Vmware::Content::Library::StorageBacking();  
$library_backing->set_type('type' =>  
Com::Vmware::Content::Library::StorageBacking::Type::OTHER);  
$library_backing->set_storage_uri('storage_uri' => 'file:///tmp');  

# 2 - Create a library model to specify properties of the new library.  
my $library_model = new  
Com::Vmware::Content::LibraryModel();  
$library_model->set_name('name' => 'AcmeLibrary');  
$library_model->set_type('type' =>  
Com::Vmware::Content::LibraryModel::LibraryType::LOCAL);  
$library_model->set_storage_backings('storage_backings' => [$library_backing]);  

# 3 - Call the create() method, passing the library model as a parameter.  
my $clientToken = ContentLibrary::Helpers::ClsApiHelper::generate_uuid();  
my $my_library_id = $client->get_local_library_service()->create('client_token' => $clientToken,  
'create_spec' => $library_model);  

...

Publish an Existing Content Library

To make the library content available for other vCenter Server instances across the vSphere Automation environment, you must publish the library. Depending on your workflow, select a method for publishing the local library. You can publish a local library that already exists in your vSphere Automation environment.

Procedure

1. Retrieve a reference to the LocalLibrary service.
2. Retrieve an existing local library by using the library ID.
3. Create a PublishInfo instance to define how the library is published.
Specify the authentication method to be used by a subscribed library to authenticate to the local library. You can enable either basic authentication or no authentication. Basic authentication requires a user name and password.

(Optional) If you publish the library with basic authentication, you must specify a user name and password for the PublishInfo instance, which must be used for authentication.

**Important** Use the predefined user name `vcsp` or leave the user name undefined. You must set only a password to protect the library.

Specify that the library is published.

Use the retrieved local library to configure it with the PublishInfo instance.

Update the properties of the LibraryModel object returned for the local library.

### Java Example of Publishing an Existing Content Library

This example is based on the code in the `LibraryPublishSubscribe.java` sample file.

This example uses the steps that are described in the Publish an Existing Content Library procedure.

**Note** For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
... // Access the LocalLibrary service.
LocalLibrary localLibraryService =
 this.vapiAuthHelper.getStubFactory().createStub(LocalLibrary.class, sessionStubconfig);

// Retrieve an existing local library.
LibraryModel libraryModel = localLibraryService.get(libraryId);
PublishInfo publishInfo = new PublishInfo();

// Configure how the local library is published by using BASIC authentication.
publishInfo.setUserName("vcsp");
publishInfo.setPassword("password".toCharArray());
publishInfo.setAuthenticationMethod(AuthenticationMethod.BASIC);

// Set the local library to published and update the library instance.
publishInfo.setPublished(true);
libraryModel.setPublishInfo(publishInfo);
localLibraryService.update(libraryModel.getId(), libraryModel);
```

### .NET Example of Publishing an Existing Local Library

This example shows how you can publish a local library, which already exists in your virtual environment.
This example uses the steps that are described in the Publish an Existing Content Library procedure.

Note For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

...  

// Access the LocalLibrary service.  
var localLibraryService = ServiceManager.VapiConnection.GetService<LocalLibrary>();

// Retrieve an existing local library.  
var libraryModel = localLibraryService.Get(libraryId);  
var publishInfo = new PublishInfo();

// Configure how the local library is published by using BASIC authentication.  
publishInfo.SetUserName("vcsp");  
publishInfo.SetPassword("password".ToCharArray());  
publishInfo.SetAuthenticationMethod(PublishInfo.AuthenticationMethod.BASIC);

// Set the local library to published and update the library instance.  
publishInfo.SetPublished(true);  
libraryModel.SetPublishInfo(publishInfo);  
localLibraryService.Update(libraryModel.GetId(), libraryModel);

Python Example of Publishing an Existing Content Library

This example is based on the code in the library_publish_subscribe.py sample file.

This example uses the steps that are described in the Publish an Existing Content Library procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

...  

# Retrieve an existing local library.  
local_library_stub = content_client.LocalLibrary(my_stub_config)  
local_library = local_library_stub.get(my_library_id)

# Specify how the local library is published, using BASIC authentication.  
publish_info = library_client.PublishInfo()  
publish_info.user_name = 'vcsp'  # Can omit this value; if specified, it must be 'vcsp'.  
publish_info.password = 'password'  
publish_info.authentication_method = library_client.PublishInfo.AuthenticationMethod.BASIC  
publish_info.published = True

# Update the LibraryModel object retrieved in step 1  
# and configure it with the PublishInfo object.  
local_library.publish_info = publish_info
Perl Example of Publishing an Existing Content Library

This example is based on the code in the publish_subscribe.pl sample file.

This example uses the steps that are described in the Publish an Existing Content Library procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

...  

Publish a Library at the Time of Creation

You can publish a local library at the time of creation to enable other libraries to subscribe and use the library content.

Procedure

1. Retrieve the LocalLibrary service.
2. Create a PublishInfo instance to define how the library is published.
3 Specify the authentication method to be used by a subscribed library to authenticate to the local library.

You can enable either basic authentication or no authentication on the library. Basic authentication requires a user name and password.

4 (Optional) If you publish the library with basic authentication, you must specify a user name and password for the PublishInfo instance, which must be used for authentication.

**Important** Use the predefined user name `vcsp` or leave the user name undefined. You must set only a password to protect the library.

5 Create a `LibraryModel` instance and configure the instance.

6 Set the library type to local and use the configured PublishInfo instance to set the library to published.

7 Define where the content of the local library is stored by using the `StorageBacking` class.

8 Create a published local library.

**Subscribe to a Content Library**

You can subscribe to public content libraries. The source objects for a public content library can be: a library created on a vCenter Server 6.0 instance, a catalog created on a vCloud Director 5.5 instance, or a third-party library. When you subscribe to a library, you must specify the backing storage for the library content. You must also provide the correct user name and password if the library requires basic authentication.

**Note** If you subscribe to libraries created with basic authentication on a vCenter Server instance, make sure that you pass `vcsp` as an argument for the user name.

**Procedure**

1 Create a `StorageBacking` instance to define the location where the content of the subscribed library is stored.

2 Create a `SubscriptionInfo` instance to define the subscription behavior of the library.

   a Provide the mechanism to be used by the subscribed library to authenticate to the published library.

      You can choose between no authentication and basic authentication depending on the settings of the published library you subscribe to. If the library is published with basic authentication, you must set basic authentication in the `SubscriptionInfo` instance. Set the user name and the password of the `SubscriptionInfo` instance to match the credentials of the published library.

   b Provide the URL to the endpoint where the metadata of the published library is stored.
c Define the synchronization mechanism of the subscribed library.

You can choose between two synchronization modes: automatic and on demand. If you enable automatic synchronization for a subscribed library, both the content and the metadata are synchronized with the published library. To save storage space, you can synchronize the subscribed library on demand and update only the metadata for the published library content.

d Set the thumbprint that is used for validating the certificate of the published library.

3 Create a `LibraryModel` instance and set the library type to subscribed
   (`LibraryModel.LibraryType.SUBSCRIBED`).

4 Access the `SubscribedLibrary` service and create the subscribed library instance.

**Java Example of Subscribing to a Published Library**

This example is based on the code in the `LibraryPublishSubscribe.java` sample file.

This example uses the steps that are described in the **Subscribe to a Content Library** procedure.

**Note** For a complete and up-to-date version of the sample code, see the *vSphere Automation SDK Java samples* at GitHub.

```java
...
// Create a StorageBacking instance to store
// the contents of the subscribed library on the local file system.
StorageBacking libraryBacking = new StorageBacking();
libraryBacking.setType(StorageBacking.Type.OTHER);
libraryBacking.setStorageUri(URI.create("/mnt/nfs/cls-root"));

// Create a new SubscriptionInfo object to define the subscription
// behavior of the library.
SubscriptionInfo subscriptionInfo = new SubscriptionInfo();
subscriptionInfo.setAuthenticationMethod
 (com.vmware.content.library.SubscriptionInfo.AuthenticationMethod.BASIC);
subscriptionInfo.setUserName("libraryUser");
subscriptionInfo.setPassword("password".toCharArray());

subscriptionInfo.setSubscriptionUrl(URI.create("https://www.acmecompary.com/library_inventory/lib.json"));

// Specify that the content of the subscribed library will be downloaded immediately.
subscriptionInfo.setAutomaticSyncEnabled(true);

// Set an SHA-1 hash of the SSL certificate of the remote endpoint.

// Create a new LibraryModel object for the subscribed library.
LibraryModel libraryModel = new LibraryModel();
libraryModel.setType(LibraryModel.LibraryType.SUBSCRIBED);
libraryModel.setName("SubscrLibrary");
```
// Attach the storage backing and the subscription info to the library model.
libraryModel.setStorageBackings(Collections.singletonList(libraryBacking));
libraryModel.setSubscriptionInfo(subscriptionInfo);

// Create the new subscribed library.
String clientToken = UUID.randomUUID().toString();
SubscribedLibrary subscribedLibService =
this.vapiAuthHelper.getStubFactory().createStub(SubscribedLibrary.class, sessionStubconfig);
String subscribedLibId = subscribedLibService.create(clientToken, libraryModel);

.NET Example of Subscribing to a Published Library

This example demonstrates how to subscribe to a published library.

This example uses the steps that are described in the Subscribe to a Content Library procedure.

Note  For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

...
Python Example of Subscribing to a Published Library

This example is based on the code in the library_publish_subscrib.py sample file.

This example uses the steps that are described in the Subscribe to a Content Library procedure.

**Note**  For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
Create a StorageBacking instance on a local file system.
library_backing = library_client.StorageBacking()
library_backing.type = library_client.StorageBacking.Type.OTHER
library_backing.storage_uri = '/mnt/nfs/cls-root'

Create a new SubscriptionInfo object to describe the subscription behavior.
subscription_info = library_client.SubscriptionInfo()
subscription_info.authentication_method = library_client.SubscriptionInfo.AuthenticationMethod.BASIC
subscription_info.user_name = 'libraryUser'
subscription_info.password = 'password'
subscription_info.subscription_url = 'https://www.acmecompany.com/library_inventory/lib.json'
subscription_info.automatic_sync_enabled = True

Create a new LibraryModel object for the subscribed library.
library_model = content_client.LibraryModel()
library_model.type = content_client.LibraryModel.LibraryType.SUBSCRIBED
library_model.name = 'subscrLibrary'

Attach the storage backing and the subscription info to the library model.
library_model.storage_backings = [library_backing]
library_model.subscription_info = subscription_info

Create the new library instance.
idem_token = str(uuid.uuid4())
local_library_stub = content_client.LocalLibrary(my_stub_config)
library_id = local_library_stub.create(create_spec=library_model, client_token=idem_token)
```

Perl Example of Subscribing to a Published Library

This example is based on the code in the publish_subcribe.pl sample file.
This example uses the steps that are described in the Subscribe to a Content Library procedure.

**Note** For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
...

Create a StorageBacking instance on a local file system.
my $library_backing = new Com::Vmware::Content::Library::StorageBacking();
$library_backing->set_type('type' => Com::Vmware::Content::Library::StorageBacking::Type::OTHER);
$library_backing->set_storage_uri('storage_uri' => 'file:///mnt/nfs/cls-root');

Create a new SubscriptionInfo object to describe the subscription behavior.
my $subscription_info = new Com::Vmware::Content::Library::SubscriptionInfo();
$subscription_info->set_authentication_method('authentication_method' => Com::Vmware::Content::Library::SubscriptionInfo::AuthenticationMethod::BASIC);
$subscription_info->set_user_name('user_name' => 'library-user');
$subscription_info->set_password('password' => 'password');
$subscription_info->set_subscription_url('subscription_url' => 'https://www.example.com/library_inventory/lib.json');
$subscription_info->set_automatic_sync_enabled('automatic_sync_enabled' => 1);

Create a new LibraryModel object for the subscribed library.
my $library_model = new Com::Vmware::Content::LibraryModel();
$library_model->set_type('type' => Com::Vmware::Content::LibraryModel::LibraryType::SUBSCRIBED);
$library_model->set_name('name' => 'subscrLibrary');

Attach the storage backing and the subscription info to the library model.
$library_model->set_storage_backings('storage_backings' => [$library_backing]);
$library_model->set_subscription_info('subscription_info' => $subscription_info);

Create the new library instance.
my $subscription_token = ContentLibrary::Helpers::ClsApiHelper::generate_uuid();
my $my_library_id = $subscribed_library_service->create('client_token' => $subscription_token, 'create_spec' => $library_model);

Synchronize a Subscribed Content Library

When you subscribe to a published library, you can configure the settings for downloading and updating the library content.

- You can enable automatic synchronization of the subscribed library and download a copy of the content of the local library immediately.
- You can save storage space and download only the metadata for the items that are part of the local library.

To ensure that your subscribed library contains the most recent published library content, you can force a synchronization task.

Procedure

1. Access the SubscribedLibrary vSphere Automation service.
2. Retrieve the subscribed library ID from the SubscribedLibrary service.
3. Force the synchronization of the subscribed library.

The synchronization operation depends on the update settings of the subscribed library. If the subscribed library is configured to update only on demand, only the metadata of the library items will be synchronized.

Editing the Settings of a Content Library

You can update the settings of content library types in your virtual environment by using the vSphere Automation API.
Table 7-1. Options for Updating a Content Library

<table>
<thead>
<tr>
<th>Content Library Types</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local content library</td>
<td>You can change the settings of a local library before calling the update function on the <code>LocalLibrary</code> object:</td>
</tr>
<tr>
<td></td>
<td>† Before a library is published, you can edit the following settings:</td>
</tr>
<tr>
<td></td>
<td>† The name of a local library that is retrieved by using the <code>LocalLibrary</code> object</td>
</tr>
<tr>
<td></td>
<td>† The human-readable description of a local library retrieved by using the <code>LocalLibrary</code> object</td>
</tr>
<tr>
<td></td>
<td>† After a library is published, you must first retrieve the <code>PublishInfo</code> instance of the published library you want. You can use</td>
</tr>
<tr>
<td></td>
<td>† Unpublish the local library.</td>
</tr>
<tr>
<td></td>
<td>† Change the authentication method of the library.</td>
</tr>
<tr>
<td></td>
<td>† Change the password that must be used for authentication.</td>
</tr>
<tr>
<td>Subscribed content library</td>
<td>You can edit the settings of a subscribed library if you retrieve the <code>SubscriptionInfo</code> instance associated with it. To apply the</td>
</tr>
<tr>
<td></td>
<td>changes, you must update the library by using the <code>SubscribedLibrary</code> object.</td>
</tr>
<tr>
<td></td>
<td>You can configure the following settings:</td>
</tr>
<tr>
<td></td>
<td>† The authentication method required by the local library</td>
</tr>
<tr>
<td></td>
<td>† The user name and password of the subscribed library for authentication to the local library</td>
</tr>
<tr>
<td></td>
<td>† The method for synchronizing the metadata and the content of the subscribed library</td>
</tr>
<tr>
<td></td>
<td>† The thumbprint used for validating the SSL certificate of the local library</td>
</tr>
</tbody>
</table>

Removing the Content of a Subscribed Library

You can free storage space in your virtual environment by removing the subscribed library content that you no longer need.

You can create a subscribed library with the option to download the library content on demand. As a result, only the metadata for the library items is stored in the associated with the subscribed library storage. When you want to deploy a virtual machine from a VM temple in the subscribed library, you must synchronize the subscribed library to download the entire published library content. When you no longer need the VM template, you can call the `evict` function on the `SubscribedLibrary` service. You must provide the subscribed library ID to this function. As a result, the subscribed library content that is cached on the backing storage is deleted.

If the subscribed library is not configured to synchronize on demand, an exception is thrown. In this case the subscribed library always attempts to have the most recent published library content.
Delete a Content Library

When you no longer need a content library, you can invoke the delete method on either the LocalLibrary or the SubscribedLibrary service depending on the library type.

Procedure

1. Access the SubscribedLibrary or the LocalLibrary service by using the vSphere Automation Endpoint.
2. Retrieve the library ID you want to delete.
3. Call the delete function on the library service and pass the library ID as argument.

All library items cached on the storage backing are removed asynchronously. If this operation fails, you must manually remove the content of the library.

Library Items

A library item groups multiple files within one logical unit. You can perform various tasks with the items in a content library.

You can upload files to a library item in a local library and update existing items. You can download the content of a library item from a subscribed library and use the item, for example, to deploy a virtual machine. You can remove the content of a library item from a subscribed library to free storage space and keep only the metadata of the library item. When you no longer need local library items, you can delete them and they are removed from the subscribed library when a synchronization task is completed.

You can create a library item from a specific item type, for example .ovf and VM template. The Content Library service must support the library item type to handle the item correctly. If no support is provided for a specified type, the Content Library service handles the library item in the default way, without adding metadata to the library item or guiding the upload process. For information about the supported VM template types, see the vSphere Virtual Machine Administration documentation.

- Create an Empty Library Item
 You can create as many library items as needed and associate them with a local content library.

- Querying Library Items
 You can perform numerous query operations on library items.

- Edit the Settings of a Library Item
 You can edit the name, description, and type of a library item.

- Upload a File from a Local System to a Library Item
 You can upload different types of files from a local system to a library item that you want to use in the vSphere Automation environment.

- Upload a File from a URL to a Library Item
 You can upload different types of files from a local system to a library item that you want to use in the vSphere Automation environment.
Download Files to a Local System from a Library Item
You might want to download files to a local system from a library item and then make changes to the files before you use them.

Synchronizing a Library Item in a Subscribed Content Library
The items in a subscribed library have features that are distinct from the items in a local library. Synchronizing the content and the metadata of an item in a subscribed library depends on the synchronization mechanism of the subscribed library.

Removing the Content of a Library Item
You can remove the content from a library item to free space on your storage.

Deleting a Library Item
You can remove a library item from a local library when you no longer need it.

Create a VM Template Library Item in a Local Content Library
By using the API or HTTP requests, you can create a local content library item from a VM in your vCenter Server inventory.

Deploy a Virtual Machine from a VM Template Library Item
By using the API or HTTP requests, you can deploy a virtual machine from a VM Template stored as an item in your local content library.

Create an Empty Library Item
You can create as many library items as needed and associate them with a local content library.

Procedure
1. Access the Item service by using the vSphere Automation endpoint.
2. Instantiate the ItemModel class.
3. Define the settings of the new library item.
4. Associate the library item with an existing local library.
5. Invoke the create function on the Item object to pass the library item specification and the unique client token.

What to do next
Upload content to the new library item. See Upload a File from a Local System to a Library Item and Upload a File from a URL to a Library Item.

Java Example of Creating a Library Item
This example shows how to create an empty library item that stores an ISO image file.
This example uses the steps that are described in the Create an Empty Library Item procedure.

Note For related code samples, see the vSphere Automation SDK Java samples at GitHub.

```java
// Create an instance of the ItemModel class and specify the item settings.
ItemModel libItemSpec = new ItemModel();
libItemSpec.setName("ESXi ISO image");
libItemSpec.setDescription("ISO image with the latest security patches for ESXi");
libItemSpec.setType("iso");

// Associate the item with an existing content library.
libItemSpec.setLibraryId("<content_library_ID>");

// Create the new Item instance, using the specified model.
Item libItemService = this.vapiAuthHelper.getStubFactory().createStub(Item.class, sessionStubconfig);
String itemID = UUID.randomUUID().toString();
String newItem = libItemService.create(itemID, libItemSpec);
```

.NET Example of Creating a Library Item

This example shows how to create a library item that stores an ISO image file.

This example uses the steps that are described in the Create an Empty Library Item procedure.

Note For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
... 

// Create an instance of the ItemModel class and specify the item settings.
var libItemSpec = new ItemModel();
libItemSpec.SetName("ESXi ISO image");
libItemSpec.SetDescription("ISO image with the latest security patches for ESXi");
libItemSpec.SetType("iso");

// Associate the item with an existing content library.
libItemSpec.SetLibraryId("<content_library_ID>");

// Create the new Item instance, using the specified model.
Item libItemService = this.vapiAuthHelper.getStubFactory().createStub(Item.class, sessionStubconfig);
String itemID = Guid.NewGuid().ToString();
String newItem = libItemService.Create(itemID, libItemSpec);
```

Python Example of Creating a Library Item

This example shows how to create an empty library item that stores an ISO image file.

```python
... 

// Create an instance of the ItemModel class and specify the item settings.
var libItemSpec = new ItemModel();
libItemSpec.SetName("ESXi ISO image");
libItemSpec.SetDescription("ISO image with the latest security patches for ESXi");
libItemSpec.SetType("iso");

// Associate the item with an existing content library.
libItemSpec.SetLibraryId("<content_library_ID>");

// Create the new Item instance, using the specified model.
Item libItemService = ServiceManager.VapiConnection.GetService<Item>();
var itemID = Guid.NewGuid().ToString();
var newItem = libItemService.Create(itemID, libItemSpec);
```
This example uses the steps that are described in the Create an Empty Library Item procedure.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

```
# 1 - Create an instance of the ItemModel class and specify the item settings.
item_model = library_client.ItemModel()
item_model.name = 'ESXi ISO image'
item_model.description = 'ISO image with the latest security patches for ESXi'
item_model.type = 'iso'

# 2 - Associate the new item with an existing library.
item_model.library_id = my_library_id

# 3 - Create the new instance of the Item class, using the specified model.
idem_token = str(uuid.uuid4())
item_stub = library_client.Item(my_stub_config)
item_id = item_stub.create(create_spec=item_model, client_token=idem_token)
```

Perl Example of Creating an Empty Library Item

This example shows how to create an empty library item that stores an ISO image file.

This example uses the steps that are described in the Create an Empty Library Item procedure.

```
# 1 - Create an instance of the ItemModel class to specify the item settings.
my $item_model = new
   Com::Vmware::Content::Library::ItemModel();
$item_model->set_name('name' => 'ESXi ISO image');
$item_model->set_description('description' =>
   'ISO image with the latest security patches for ESXi');
$item_model->set_type('type' => 'iso');

# 2 - Associate the new item with an existing library.
$item_model->set_library_id('library_id' => $my_library_id);

# 3 - Create the new instance of the Item class, using the specified model.
my $item_stub = $stubFactory->create_stub(
   'service_name' => 'Com::Vmware::Content::Library::Item',
   'stub_config'  => $myStubConfig );
my $idem_token = ContentLibrary::Helpers::ClsApiHelper::generate_uuid();
my $my_item_id = $item_stub->create(
   'client_token' => $idem_token,
   'create_spec'  => $item_model );
```
Querying Library Items

You can perform numerous query operations on library items. You can retrieve a list of all items in a library, retrieve a library item that has a specific type or name, and find a library item that is not cached on the disk. You can then update the library item content from the subscribed library.

List Library Items

You can use the list method of the Item object to retrieve a list of all items in a particular library.

Prerequisites

Verify that you have access to the Item service.

Procedure

1. Retrieve the ID of the content library whose items you want to list.
2. List the items of the specific library.
3. Retrieve a list of the files that belong to a library item.

You can see an example query operation in the code example for Edit the Settings of a Library Item. The beginning of the example lists the items of a published library and prints a list with the names and size of each file in the listed items.

List Library Items That Match Specific Criteria

You can filter the items contained in a library and retrieve only the items matching specific criteria. For example, you might want to remove or update only specific items in a library.

Prerequisites

Verify that you have access to the Item service.

Procedure

1. Create an instance in the FindSpec class.
2. Specify the filter properties by using the FindSpec instance.
3. List the items matching the specified filter.

A list of items matching the filter criteria is created as a result.

Edit the Settings of a Library Item

You can edit the name, description, and type of a library item.

Prerequisites

Verify that you have access to the Item service.
Procedure

1. Retrieve the item that you want to update.
2. Create an ItemModel instance.
3. Change the human-readable name and description of the library item.
4. Update the library item with the configured item model.

Java Example of Changing the Settings for a Library Item

This example shows how to find an item by using the item name and then how to change the name and description of the retrieved item.

This example uses the steps that are described in the Edit the Settings of a Library Item procedure.

Note For related code samples, see the vsphere Automation SDK Java samples at GitHub.

```java
// List the items in a published library
Item libItemService = this.vapiAuthHelper.getStubFactory().createStub(Item.class, sessionStubconfig);
List<String> itemIds = libItemService.list(libraryId.getId());
for (String itemId : itemIds) {
  ItemModel singleItem = libItemService.get(itemId);

  // List the files uploaded to each library item and print their names and size
  com.vmware.content.library.item.File itemFilesService =
  this.vapiAuthHelper.getStubFactory().createStub(com.vmware.content.library.item.File.class, sessionStubconfig);
  List<com.vmware.content.library.item.FileTypes.Info> fileInfos =
  itemFilesService.list(itemId);
  for (com.vmware.content.library.item.FileTypes.Info singleFile : fileInfos) {
    System.out.println("Library item with name "+ singleFile.getName() + " has size "+ singleFile.getSize());
  }

  // Change the name and description of the library item with the specified name
  if (singleItem.getName().equals("simpleVmTemplate")) {
    ItemModel libItemUpdated = new ItemModel();
    libItemUpdated.setName("newItemName");
    libItemUpdated.setDescription("Description of the newItemName");
    libItemService.update(singleItem.getId(), libItemUpdated);
  }
}
```

.NET Example of Changing the Settings for a Library Item

This example shows how to find an item by using the item name and then how to change the name and description of the retrieved item.
This example uses the steps that are described in the Edit the Settings of a Library Item procedure.

Note For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
...
var libItemService = ServiceManager.VapiConnection.GetService<Item>();
var itemFilesService = ServiceManager.VapiConnection.GetService<
vmware.content.library.item.File>();

// List the items in a published library
foreach (var itemId in libItemService.List(libraryId))
{
    // List the files uploaded to each library item and print their names and size
    foreach (var singleFile in itemFilesService.List(itemId))
    {
        Console.WriteLine("Library item with name " + singleFile.GetName() + 
            " has size " + singleFile.GetSize());
    }

    // Change the name and description of the library item with the specified name
    var singleItem = libItemService.Get(itemId);
    if (singleItem.GetName().Equals("simpleVmTemplate"))
    {
        var libItemUpdated = new ItemModel();
        libItemUpdated.SetName("newItemName");
        libItemUpdated.SetDescription("Description of the newItemName");
        libItemService.Update(singleItem.GetId(), libItemUpdated);
    }
}
```

Python Example of Changing the Settings for a Library Item

This example shows how to find an item by using the item name and then how to change the name and description of the retrieved item.

This example uses the steps that are described in the Edit the Settings of a Library Item procedure.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

```python
...
# 1 - List the items in a published library.
item_stub = library_client.Item(my_stub_config)
item_ids = item_stub.list(my_library_id)

# 2 - List the files uploaded to each library item and print their names and sizes.
file_stub = item_client.File(my_stub_config)
for item_id in item_ids:
    item = item_stub.get(item_id)
    file_infos = file_stub.list(item_id)
```
Perl Example of Changing the Settings of a Library Item

This example shows how to find an item by using the item name and then how to change the name and description of the retrieved item.

This example uses the steps that are described in the Edit the Settings of a Library Item procedure.

Note For related code samples, see the vSphere Automation SDK Perl samples at GitHub.
Upload a File from a Local System to a Library Item

You can upload different types of files from a local system to a library item that you want to use in the vSphere Automation environment.

Prerequisites

- Create an empty library item. See Create an Empty Library Item.
- Verify that you have access to the UpdateSession and File services.

Procedure

1. Create an UpdateSessionModel instance to track the changes that you make to the library item.
2. Create an update session by using the UpdateSession service.
3. Create an AddSpec instance to describe the upload method and other properties of the file to be uploaded.
4. Create the request for changing the item by using the File service.
5. Upload the file that is on the local system.
6. Complete and delete the update session to apply the changes to the library item.

Java Example of Uploading Files to a Library Item from a Local System

This example shows how to upload an ISO image file from a local system to a library item.
This example uses the steps that are described in the Upload a File from a Local System to a Library Item procedure.

Note For related code samples, see the vSphere Automation SDK Java samples at GitHub.

```java
...

// Access the com.vmware.content.library.item.updatesession.File.
// and the UpdateSession services by using the vSphere Automation Endpoint.
File uploadFileService = this.vapiAuthHelper.getStubFactory().createStub(File.class, sessionStubconfig);
UpdateSession uploadService = this.vapiAuthHelper.getStubFactory().createStub(UpdateSession.class, sessionStubconfig);

// Create an UpdateSessionModel instance to track the changes you make to the item.
UpdateSessionModel updateSessionModel = new UpdateSessionModel();
updateSessionModel.setLibraryItemId(newItem);

// Create a new update session.
String clientToken = UUID.randomUUID().toString();
String sessionId = uploadService.create(clientToken, updateSessionModel);

// Create an instance of the HttpClient class which is part of the
// com.vmware.vcloud.suite.samples.common package.
try {
    HttpClient httpClient = new HttpClient(true);
    FileTypes.AddSpec fileSpec = new FileTypes.AddSpec();
    fileSpec.setName("ESXi patch");
    fileSpec.setSourceType(FileTypes.SourceType.PUSH);

    // Link the ISO file specification to the update session.
    FileTypes.Info fileInfo = uploadFileService.add(sessionId, fileSpec);

    // Use the HTTP library to upload the file to the library item.
    URI uploadUri = fileInfo.getUploadEndpoint().getUri();
    java.io.File file = new java.io.File("/updates/esxi/esxi_patch.iso");
    String transferUrl = uploadUri.toURL().toString();
    httpClient.upload(file, transferUrl);

    // Mark the upload session as completed.
    uploadService.complete(sessionId);
} finally {
    uploadService.delete(sessionId);
}
```

.NET Example of Uploading Files to a Library Item from the Local System

This example shows how to upload an ISO image file from the local system to a library item.
This example uses the steps that are described in the Upload a File from a Local System to a Library Item procedure.

Note For related code samples, see the [vSphere Automation SDK .NET samples](https://github.com/vmware/vsphere-automation-sdk-dotnet) at GitHub.

```csharp
...

// Create a new library item as described in [.NET Example of Creating a Library Item](#).

...

// Create an UpdateSessionModel instance to track the changes you make to the item.
var updateSessionModel = new UpdateSessionModel();
updateSessionModel.SetLibraryItemId(newItem);

// Create a new update session.
var uploadService = ServiceManager.VapiConnection.GetService<UpdateSession>();
var sessionId = uploadService.Create(Guid.NewGuid().ToString(), updateSessionModel);
try {
    // Instantiate the vmware.vcloud.suite.samples.common.HttpHelper class.
    var httpClient = new HttpClient(true);

    // Create a new AddSpec instance to describe the properties of the file to be uploaded.
    var fileSpec = new vmware.content.library.item.updatesession.FileTypes.AddSpec();
    fileSpec.SetName("ESXi patch");
    fileSpec.SetSourceType(vmware.content.library.item.updatesession.FileTypes.SourceType.PUSH);
    var uploadFileService = ServiceManager.VapiConnection.GetService<vmware.content.library.item.updatesession.File>();
    var fileInfo = uploadFileService.Add(sessionId, fileSpec);
    var uploadUri = fileInfo.GetUploadEndpoint().GetUri();
    var file1 = System.IO.File.Create("/updates/esxi/esxi_patch.iso");

    // Use the HTTP PUT request to upload the file to the library item.
    httpClient.Upload(file1, uploadUri.ToString());

    // Mark the upload session as completed.
    uploadService.Complete(sessionId);
} finally {
    uploadService.Delete(sessionId);
}
```

Python Example of Uploading Files to a Library Item from a Local System

This example shows how to upload an ISO image file from the local system to a library item.

```python
...

// Create a new library item as described in [.NET Example of Creating a Library Item](#)

...

// Create an UpdateSessionModel instance to track the changes you make to the item.
var updateSessionModel = new UpdateSessionModel();
updateSessionModel.SetLibraryItemId(newItem);

// Create a new update session.
var uploadService = ServiceManager.VapiConnection.GetService<UpdateSession>();
var sessionId = uploadService.Create(Guid.NewGuid().ToString(), updateSessionModel);
try {
    // Instantiate the vmware.vcloud.suite.samples.common.HttpHelper class.
    var httpClient = new HttpClient(true);

    // Create a new AddSpec instance to describe the properties of the file to be uploaded.
    var fileSpec = new vmware.content.library.item.updatesession.FileTypes.AddSpec();
    fileSpec.SetName("ESXi patch");
    fileSpec.SetSourceType(vmware.content.library.item.updatesession.FileTypes.SourceType.PUSH);
    var uploadFileService = ServiceManager.VapiConnection.GetService<vmware.content.library.item.updatesession.File>();
    var fileInfo = uploadFileService.Add(sessionId, fileSpec);
    var uploadUri = fileInfo.GetUploadEndpoint().GetUri();
    var file1 = System.IO.File.Create("/updates/esxi/esxi_patch.iso");

    // Use the HTTP PUT request to upload the file to the library item.
    httpClient.Upload(file1, uploadUri.ToString());

    // Mark the upload session as completed.
    uploadService.Complete(sessionId);
} finally {
    uploadService.Delete(sessionId);
}
```
This example uses the steps that are described in the Upload a File from a Local System to a Library Item procedure.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

```python
...
```

1. Create an instance of the ItemModel class and specify the item settings.
   ```python
   item_model = library_client.ItemModel()
   item_model.name = 'ESXi patches'
   item_model.description = 'ESXi security patches'
   item_model.type = 'iso'
   item_model.library_id = my_library_id
   idem_token = str(uuid.uuid4())
   item_stub = library_client.Item(my_stub_config)
   item_id = item_stub.create(create_spec=item_model,
                               client_token=idem_token)
   ```

2. Create an UpdateSessionModel instance to track the changes you make to the item.
   ```python
   update_session_model = item_client.UpdateSessionModel()
   update_session_model.library_item_id = item_id
   ```

3. Create an update session from the model.
   ```python
   idem_token = str(uuid.uuid4())
   update_session_stub = update_session_client.UpdateSession(my_stub_config)
   session_id = update_session_stub.create(create_spec=update_session_model
                                             client_token=idem_token)
   ```

try:

4. Create a new AddSpec instance to describe the properties of the file to be uploaded.
   ```python
   file_spec = update_session_client.AddSpec()
   file_spec.name = 'ESXi patch'
   file_spec.source_type = update_session_client.FileSourceType.PUSH
   ```

5. Link the ISO file spec to the update session.
   ```python
   file_info = update_file_stub.File.add(update_session_id=session_id,
                                         file_spec=file_spec)
   ```

6. Use HTTP library to upload the file to the library item.
   ```python
   upload_uri = file_info.upload_endpoint.uri
   file_name = '/updates/esxi/esxi_patch.iso'
   host = urlparse.urlsplit(upload_uri)
   connection = httplib.HTTPConnection(host.netloc)
   with open(file_name, "rb") as f:
       connection.request("PUT", upload_uri, f)
   ```

7. Commit the updates.
   ```python
   library_item_service.UpdateSession.complete(session_id)
   ```

finally:

8. Delete the session.
   ```python
   library_item_service.UpdateSession.delete(session_id)
   ```
Upload a File from a URL to a Library Item

You can upload different types of files from a local system to a library item that you want to use in the vSphere Automation environment.

Prerequisites

- Create an empty library item. See Create an Empty Library Item.
- Verify that you have access to the UpdateSession and File services.

Procedure

1. Create an UpdateSessionModel instance to track the changes that you make to the library item.
2. Create an update session by using the UpdateSession service.
3. Create a file specification to describe the upload method and other properties of the file to be uploaded.
4. Specify the location of the file to be uploaded by creating a TransferEndpoint instance.
5. Add the file source endpoint to the file specification.
6. Create a request for changing the item by using the configured file specification.
7. Complete the update session to apply the changes to the library item.

Java Example of Uploading a File from a URL to a Library Item

This example shows how to upload a file from a URL to a library item. The example is based on the code in the ItemUploadHelper.java sample file.

This example uses the steps that are described in the Upload a File from a URL to a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...

// Create a new library item. See Create an Empty Library Item.

...

// Access the com.vmware.content.library.item.updatesession.File
// and the UpdateSession services by using the vSphere Automation Endpoint.

    File uploadFileService = this.vapiAuthHelper.getStubFactory().createStub(File.class,
                        sessionStubConfig);
    UpdateSession uploadService = this.vapiAuthHelper.getStubFactory().createStub(UpdateSession.class,
                        sessionStubConfig);

// Create an UpdateSessionModel instance to track the changes you make to the item.

    UpdateSessionModel updateSessionModel = new UpdateSessionModel();
```
updateSessionModel.setLibraryItemId(newItem);

// Create a new update session.
String clientToken = UUID.randomUUID().toString();
String sessionId = uploadService.create(clientToken, updateSessionModel);

// Create a new AddSpec instance to describe the properties of the file to be uploaded.
FileTypes.AddSpec fileSpec = new AddSpec();
fileSpec.setName("ESXi patch");
fileSpec.setSourceType(SourceType.PULL);

// Specify the location from which the file is uploaded to the library item.
TransferEndpoint endpoint = new TransferEndpoint();
endpoint.setUri(URI.create("http://www.acme.com/patches_ESXi65/ESXi_patch.iso"));
fileSpec.setSourceEndpoint(endpoint);
uploadFileService.add(sessionId, fileSpec);

// Mark the session as completed.
uploadService.complete(sessionId);

.NET Example of Uploading a File from a URL to a Library Item

This example shows how to upload a file from a URL to a library item.

This example uses the steps that are described in the Upload a File from a URL to a Library Item procedure.

Note For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

...

// Create a new library item. See Create an Empty Library Item.
...

// Create an UpdateSessionModel instance to track the changes you make to the item.
var updateSessionModel = new UpdateSessionModel();
updateSessionModel.SetLibraryItemId(newItem);

// Create a new update session.
var uploadService = ServiceManager.VapiConnection.GetService<UpdateSession>();
var sessionId = uploadService.Create(Guid.NewGuid().ToString(), updateSessionModel);

// Create a new AddSpec instance to describe the properties of the file to be uploaded.
var fileSpec = new vmware.content.library.item.updatesession.FileTypes.AddSpec();
fileSpec.SetName("ESXi patch");
fileSpec.SetSourceType(vmware.content.library.item.updatesession.FileTypes.SourceType.PULL);

// Specify the location from which the file is uploaded to the library item.
var endpoint = new TransferEndpoint();
endpoint.SetUri(new Uri("http://www.acme.com/patches_ESXi65/ESXi_patch.iso"));
fileSpec.SetSourceEndpoint(endpoint);
var uploadFileService =
ServiceManager.VapiConnection.GetService<vmware.content.library.item.updatesession.File>();
uploadFileService.Add(sessionId, fileSpec);

// Mark the session as completed.
uploadService.Complete(sessionId);

Python Example of Uploading a File from a URL to a Library Item

This example shows how to upload a file from a URL to a library item. The example is based on the code in the cls_api_helper.py sample file.

This example uses the steps that are described in the Upload a File from a URL to a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

1 - Create a new library item to hold the uploaded file.
item_model = library_client.ItemModel()
item_model.name = 'ESXi patches'
item_model.description = 'ESXi security patches'
item_model.type = 'iso'
item_model.library_id = my_library_id
idem_token = str(uuid.uuid4())
item_stub = library_client.Item(my_stub_config)
item_id = item_stub.create(create_spec=item_model, client_token=idem_token)

2 - Create an UpdateSessionModel instance to track the changes you make to the item.
update_session_model = item_client.UpdateSessionModel()
update_session_model.library_item_id = item_id

3 - Create an update session from the model.
idem_token = str(uuid.uuid4())
update_session_stub = update_session_client.UpdateSession(my_stub_config)
session_id = update_session_stub.create(create_spec=update_session_model, client_token=idem_token)

try :
 # 4 - Create a new AddSpec instance to describe the properties of the file to be uploaded.
 file_spec = update_session_client.AddSpec()
 file_spec.name = 'ESXi patch'
 file_spec.source_type = update_session_client.File.SourceType.PULL

 # 5 - Specify the location from which the file is to be uploaded to the library item.
 endpoint = item_client.TransferEndpoint()
 endpoint.uri = 'http://www.example.com/patches_ESXi65/ESXi_patch.iso'
 file_spec.source_endpoint = endpoint

 # 6 - Link the file specification to the update session.
 update_file_stub = update_session_client.File(my_stub_config)
Perl Example of Uploading a File from a URL to a Library Item

This example shows how to upload a file from a URL to a library item. The example is based on the code in the ItemUploadHelper.pm sample file.

This example uses the steps that are described in the Upload a File from a URL to a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
# 1 - Create a new library item to hold the uploaded file.
my $item_model = new
    Com::Vmware::Content::Library::ItemModel();
$item_model->set_name('name' => 'ESXi patches');
$item_model->set_description('description' => 'ESXi security patches');
$item_model->set_type('type' => 'iso');
$item_model->set_library_id('library_id' => $my_library_id);
my $idem_token = ContentLibrary::Helpers::ClsApiHelper::generate_uuid();
my $item_stub = $stubFactory->create_stub(
    'service_name' => 'Com::Vmware::Content::Library::Item',
    'stub_config'  => $myStubConfig );
my $my_library_item_id = $item_stub->create('create_spec'  => $item_model,
                                            'client_token' => $idem_token);

# 2 - Create an UpdateSessionModel instance to track your changes to the item.
my $update_session_model = new
    Com::Vmware::Content::Library::Item::UpdateSessionModel();
$update_session_model->set_library_item_id('library_item_id' => $my_library_item_id);

# 3 - Create an update session from the model.
my $update_session_stub = $stubFactory->create_stub(
    'service_name' => 'Com::Vmware::Content::Library::Item::UpdateSession',
    'stub_config'  => $myStubConfig );
my $update_session_id =
    $update_session_stub->create('create_spec'  => $update_session_model,
                                 'client_token' => $idem_token);

# 4 - Create a new AddSpec instance to describe the properties of
#     the file to be uploaded.
my $file_spec = new
    Com::Vmware::Content::Library::Item::Updatesession::File::AddSpec();
$file_spec->set_name('name' => 'ESXi patch');
$file_spec->set_source_type('type' => Com::Vmware::Content::Library::Item::Updatesession::File::SourceType::PULL);
```
5 - Specify the location from which the file is to be uploaded.
my $endpoint = new
 \{\\'service\' => 'Com::Vmware::Content::Library::Item::TransferEndpoint\';\}
$endpoint->set_uri('uri' => 'http://www.example.com/patches_ESXi65/ESXi_patch.iso');
$file_spec->set_source_endpoint('source_endpoint' => $endpoint);

6 - Link the file specification to the update session.
my $update_file_stub = $stubFactory->create_stub(\n 'service_name' => 'Com::Vmware::Content::Library::Item::Updatesession::File',\n 'stub_config' => $myStubConfig);
$update_file_stub->add('update_session_id' => $update_session_id,\n 'file_spec' => $file_spec);

7 - Mark session as completed, to initiate the asynchronous transfer.
$update_session_stub->complete('update_session_id' => $update_session_id);

Download Files to a Local System from a Library Item

You might want to download files to a local system from a library item and then make changes to the files before you use them.

Procedure

1. Create a download session model to specify the item, which contains the file that you want to download.
2. Access the File service and retrieve the file that you want to export to your system within the new download session.
3. Prepare the files that you want to download and wait until the files are in the prepared state.
4. Retrieve the download endpoint URI of the files.
5. Download the files with an HTTP GET request.
6. Delete the download session after all files are downloaded.

Java Example of Downloading Files from a Library Item to Your Local System

This example is based on the code in the ItemDownloadHelper.java sample file.

This example uses the steps that are described in the Download Files to a Local System from a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

...
// Create a new download session model.
DownloadSessionModel downloadSessionModel = new DownloadSessionModel();
downloadSessionModel.setLibraryItemId(libItem.getId());
String downloadSessionId = downloadSessionService.create(UUID.randomUUID().toString(),
downloadSessionModel);

// Access the File service and retrieve the files you want to export.
File downloadFileService = vapiAuthHelper.getStubFactory().createStub(File.class,
 sessionStubConfig);
List<FileTypes.Info> downloadFileInfos = downloadFileService.list(downloadSessionId);
for (FileTypes.Info downloadFileInfo : downloadFileInfos) {

 // Make sure all files are in the prepared state before you precede with the downloading operation.
 downloadFileService.prepare(downloadSessionId, downloadFileInfo.getName(),
 EndpointType.HTTPS);
 long timeOut = 360;
 Long endTime = System.currentTimeMillis() + timeOut * 1000;
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {
 System.out.println(e);
 }
 FileTypes.PrepareStatus expectedStatus =
 com.vmware.content.library.item.downloadsession.File.PrepareStatus.PREPARED;
 downloadFileInfo = downloadFileService.get(downloadSessionId, downloadFileInfo.getName());
 FileTypes.PrepareStatus currentStatus = downloadFileInfo.getStatus();
 if (currentStatus == expectedStatus) {

 // When the files are prepared, you can retrieve the download information for each file.
 try {
 URI downloadUri = downloadFileInfo.getDownloadEndpoint().getUri();
 String downloadUrl = downloadUri.toURL().toString();
 HttpClient httpClient = new HttpClient(true);
 InputStream inputStream = httpClient.downloadFile(downloadUrl);
 String fileNameDownload = downloadFileInfo.getName();
 File tmpDir = new java.io.File("tmp");
 tmpDir.mkdir();
 String fullPath = tmpDir.getAbsolutePath() +
 System.getProperty("file.separator") + fileNameDownload;
 Files.copy(inputStream, Paths.get(fullPath),StandardCopyOption.REPLACE_EXISTING);
 } catch (MalformedURLException e) {
 System.out.println("Failed to download due to IOException!" + e);
 throw new RuntimeException("Failed to download due to IOException!", e);
 } catch (IOException e) {
 System.out.println("IO exception during download" + e);
 throw new RuntimeException("Failed to download due to IOException!", e);
 }
 }
}

// Delete the download session after all files are downloaded.
} finally {

DownloadFileService.delete(downloadSessionId);
}
} else {
 while (endTime > System.currentTimeMillis()) {
 downloadFileInfo = DownloadFileService.get(downloadSessionId, downloadFileInfo.getName());
 currentStatus = downloadFileInfo.getStatus();
 if (currentStatus == expectedStatus) {
 return;
 } else if (currentStatus == com.vmware.content.library.item.downloadsession.File.PrepareStatus.ERROR) {
 System.out.println("DownloadSession Info : " + downloadSessionService.get(downloadSessionId));
 throw new RuntimeException("Error while waiting for download file status to be PREPARED...");
 }
 }
}
}

.NET Example of Downloading Files from a Library Item to Your Local System

This example shows how to copy library item files to the client system by using an HTTP transfer. This example uses the steps that are described in the Download Files to a Local System from a Library Item procedure.

Note For related code samples, see the vSphere Automation SDK .NET samples at GitHub.

... // Access the DownloadSession service.
var downloadSessionService = ServiceManager.VapiConnection.GetService<DownloadSession>();

// Create a new download session model.
var downloadSessionModel = new DownloadSessionModel();
downloadSessionModel.SetLibraryItemId(libItem.GetId());
var downloadSessionId = downloadSessionService.Create(Guid.NewGuid().ToString(), downloadSessionModel);
var httpClient = new HttpClient(true);

// Access the File service and retrieve the files you want to export.
var downloadFileService = ServiceManager.VapiConnection.GetService<vmware.content.library.item.downloadsession.File>();
for (var downloadFileInfo in downloadFileService.List(downloadSessionId)) {
 // Make sure all files are in prepared state before you precede with the downloading operation
 downloadFileService.Prepare(downloadSessionId, downloadFileInfo.GetName(),
vmware.content.library.item.downloadsession.FileTypes.EndpointType.HTTPS);
 long timeOut = 360;
 long endTime = DateTime.Now.Millisecond + timeOut * 1000;
 Thread.sleep(5000);
 var expectedStatus = vmware.content.library.item.downloadsession.File.PrepareStatus.PREPARED;
downloadFileInfo = downloadFileService.Get(downloadSessionId, downloadFileInfo.GetName());
var currentStatus = downloadFileInfo.GetStatus();
if (currentStatus == expectedStatus)
{
 // When the files are prepared, you can retrieve the download information for each file.
 downloadFileInfo = downloadFileService.Get(downloadSessionId, downloadFileInfo.GetName());
 var downloadUrl = downloadFileInfo.GetDownloadEndpoint().GetUri().ToString();

 // Execute an HTTP GET request and pass the URLs to the endpoints of the download files.
 using(var inputStream = httpClient.DownloadFile(downloadUrl))
 {
 var tmpDirInfo = Directory.CreateDirectory("tmp");
 var fullLocalPath = Path.Combine(tmpDirInfo.FullName, downloadFileInfo.GetName());
 using(var localFile = File.Create(fullLocalPath))
 {
 // Copy the files to the directory on your machine
 inputStream.CopyTo(localFile);
 }
 }
 else
 {
 while (endTime > DateTime.Now.Millisecond)
 {
 downloadFileInfo = downloadFileService.Get(downloadSessionId, downloadFileInfo.GetName());
 currentStatus = downloadFileInfo.GetStatus();
 if (currentStatus == expectedStatus)
 {
 return;
 }
 else if (currentStatus == vmware.content.library.item.downloadsession.File.PrepareStatus.ERROR)
 {
 Console.WriteLine("DownloadSession Info : " + downloadSessionService.Get(downloadSessionId));
 throw new Exception("Error while waiting for download file status to be PREPARED...");
 }
 }
 }
}

Python Example of Downloading Files from a Library Item to Your Local System

This example uses the code in the cls_api_helper.py sample file.
This example uses the steps that are described in the Download Files to a Local System from a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
# 1 - Create a new download session model.
download_session_model = item_client.DownloadSessionModel()
download_session_model.library_item_id = my_library_item_id
download_session_stub = item_client.DownloadSession(my_stub_config)
idem_token = str(uuid.uuid4())
download_session_id = download_session_stub.create(create_spec=download_session_model,
client_token=idem_token)

# 2 - Access the File service and retrieve the files you want to export.
download_session_file_stub = download_session_client.File(my_stub_config)
file_infos = download_session_file_stub.list(download_session_id)
for file_info in file_infos:
    download_session_file_stub.prepare(download_session_id, file_info.name)

# 3 - Wait until the file is in the prepared state before downloading.
download_info = download_session_file_stub.get(download_session_id, file_info.name)
while (DownloadSessionFile.PrepareStatus.PREPARED != download_info.status):
    time.sleep(30)

# 4 - Download the file with an HTTP GET request.
response = urllib2.urlopen(download_info.download_endpoint.uri)
file_path = os.path.join(my_directory, file_info.name)
with open(file_path, 'wb') as f:
    f.write(response.read())

# 5 - Delete the download session after all files are downloaded.
download_session_stub.delete(download_session_id)
```

Perl Example of Downloading Files from a Library Item to Your Local System

This example uses the code in the ItemDownloadHelper.pm sample file.

This example uses the steps that are described in the Download Files to a Local System from a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
# 1 - Create a new download session model.
my $download_session_model = new
    Com::Vmware::Content::Library::Item::DownloadSessionModel();
```
Synchronizing a Library Item in a Subscribed Content Library

The items in a subscribed library have features that are distinct from the items in a local library. Synchronizing the content and the metadata of an item in a subscribed library depends on the synchronization mechanism of the subscribed library.
Table 7-2. Options for Synchronizing a Library Item

<table>
<thead>
<tr>
<th>Synchronization Type of the Subscribed Library</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronized on demand</td>
<td>If the subscribed library is synchronized on demand, you can use the <code>sync</code> method on the <code>SubscribedItem</code> service and pass as arguments the library item ID and <code>true</code>. When you perform the task, both the item metadata and the content are synchronized. To synchronize only the metadata of the item, pass the library ID and <code>false</code> as arguments to the method.</td>
</tr>
<tr>
<td>Not synchronized on demand</td>
<td>If the subscribed library is not synchronized on demand, you can use the <code>sync</code> method on the <code>SubscribedItem</code> service and pass as argument the item ID. In this case, the content of the item is always synchronized and the Boolean value is ignored when the call is executed.</td>
</tr>
<tr>
<td>Synchronized automatically</td>
<td>If the subscribed library is synchronized automatically, you can also use the <code>sync</code> method to force the synchronization of an item. Method execution depends on whether the subscribed library is synchronized on demand.</td>
</tr>
</tbody>
</table>

Removing the Content of a Library Item

You can remove the content from a library item to free space on your storage.

If you create a subscribed library with the option to synchronize library content on demand, only the metadata for the library items is stored. When you want to use the items in the library, you must force synchronization on the items to download their content. When you no longer need the files in an item, you can remove the cached content of the library item and free storage space. To achieve this task use the `evict` function of the `SubscribedItem` object.

Deleting a Library Item

You can remove a library item from a local library when you no longer need it.

To remove a library item from a library, you can call the `delete` method on the `Item` object and pass the library item ID as an argument. The item content is asynchronously removed from the storage.

You cannot remove items from a subscribed library. If you remove an item from a local library, the item is removed from the subscribed library when you perform a synchronization task on the subscribed library item.

Create a VM Template Library Item in a Local Content Library

By using the API or HTTP requests, you can create a local content library item from a VM in your vCenter Server inventory.

When you run the operation, the API creates a clone of your VM and stores it as a VM template in your local content library. If the operation is successful, the API returns the ID of the newly created library item.
To create a library item that contains a VM template, you can use the com.vmware.vcenter.vm_template_client.LibraryItems class or the POST https://<vCenter_Server_IP>/rest/vcenter/vm-template/library-items HTTP request. You can review the information about a VM template by using the GET https://<vCenter_Server_IP>/rest/vcenter/vm-template/library-items/<VM_Template_Item_ID> HTTP request. For information about how to create a VM template by using the vSphere Client, see the vSphere Virtual Machine Administration documentation.

For information about the available and mandatory parameters, see the API Reference documentation.

Prerequisites
- Verify that you have administrative privileges on your vCenter Server instance.
- Verify that you created a vAPI session to your vCenter Server.
- Verify that you created a local library by using the vSphere Client, API, or HTTP request.

Procedure
1. Get the ID of your ESXi host on which you want to store the VM template.
 You can use the com.vmware.vcenter_client.Host.list() method or the GET https://<vCenter_Server_IP>/rest/vcenter/host HTTP request.
2. Get the ID of the datastore on which you want to store the VM template files.
 You can use the com.vmware.vcenter_client.Datastore.list() method or the GET https://<vCenter_Server_IP>/rest/vcenter/datastore HTTP request.
3. Get the ID of the VM that you want to clone to a VM template.
 You can use the com.vmware.vcenter_client.VM.list() method or the GET https://<vCenter_Server_IP>/rest/vcenter/vm HTTP request.
4. Get the ID of your local library.
 You can get the list of the local libraries in your vCenter Server and review the information about each library by using the com.vmware.content_client.LocalLibrary.list() and com.vmware.content_client.LocalLibrary.get(library_id) methods or the following HTTP requests: GET https://<vCenter_Server_IP>/rest/com/vmware/content/local-library and GET https://<vCenter_Server_IP>/rest/com/vmware/content/library/id:<library_id>.
5 Create a VM Template library item specification.

You can use the `com.vmware.vcenter.vm_template_client.LibraryItems.CreateSpec` class or the body of the POST `https://<vCenter_Server_IP>/rest/vcenter/vm-template/library-items` HTTP request.

a Specify the local library, source VM, and the name of the VM Template library item by using the `library`, `source_vm`, and `name` parameters. You must use the IDs of the local library and source VM.

b Specify the place of your VM template in your inventory.

You can use the `LibraryItems.CreatePlacementSpec` class or the placement parameters in the body of the request. To specify the ESXi host, resource pool, cluster, and folder, you must use their IDs.

c Specify the datastore on which you want to store the log, configuration, and disk files of your VM template.

You can use the `com.vmware.vcenter.vm_template_client.LibraryItems.CreateSpecVmHomeStorage` and `com.vmware.vcenter.vm_template_client.LibraryItems.CreateSpecDiskStorage` classes or the `vm_home_storage` and `disk_storage` parameters in the body of the request. You must use the ID of the datastore.

d Include the placement and storage specifications in the library item specification.

6 Create a VM Template library item.

You can use the `com.vmware.vcenter.vm_template_client.LibraryItems.create(spec)` method or send the POST `https://<vCenter_Server_IP>/rest/vcenter/vm-template/library-items` request.

If the operation is successful, the API returns the ID of the VM Template library item. For information about the available responses, see the `API Reference` documentation.

What to do next

- Review the information stored in the VM Template library item by using the `com.vmware.vcenter.vm_template_client.LibraryItems.get(VM_template_item_ID)` method or the GET `https://<vCenter_Server_IP>/rest/vcenter/vm-template/library-items/<library_item_id>` HTTP request. If you did not save the ID of your item, you can check the UUID of your VM Template item by using the vSphere Client. The URN ends with the ID of the item and has the following format: `urn:vapi:com.vmware.content.library.Item:<VMTemplateItemID>`.
Python Example of Creating a VM Template Content Library Item

This example shows how you can create a VM Template library item by using the API. The example is based on the `create_vm_template.py` sample.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
class CreateVmTemplate(SampleBase):
    ...
    def _setup(self):
        # Required arguments
        self.vm_name = self.args.vmname
        self.datacenter_name = self.args.datacentername
        self.resource_pool_name = self.args.resourcepoolname
        self.datastore_name = self.args.datastorename

        # Optional arguments
        self.item_name = (self.args.itemname if self.args.itemname
                         else rand('vmtx-item-'))

        self.servicemanager = self.get_service_manager()
        self.client = ClsApiClient(self.servicemanager)
        self.helper = ClsApiHelper(self.client, self.skip_verification)

        session = get_unverified_session() if self.skip_verification else None
        self.vsphere_client = create_vsphere_client(server=self.server,
                                                  username=self.username,
                                                  password=self.password,
                                                  session=session)

    def _execute(self):
        # Get the identifiers
        vm_id = get_vm(self.vsphere_client, self.vm_name)
        assert vm_id
        resource_pool_id = get_resource_pool(self.vsphere_client,
                                              self.datacenter_name,
                                              self.resource_pool_name)
        assert resource_pool_id

        # Create a library
        storage_backings = self.helper.create_storage_backings(
            self.servicemanager, self.datastore_name)
        self.library_id = self.helper.create_local_library(storage_backings,
                                                            self.library_name)

        # Build the create specification
        create_spec = VmtxLibraryItem.CreateSpec()
        create_spec.source_vm = vm_id
        create_spec.library = self.library_id
        create_spec.name = self.item_name
        create_spec.placement = VmtxLibraryItem.CreatePlacementSpec(
            placement_spec)
```
Deploy a Virtual Machine from a VM Template Library Item

By using the API or HTTP requests, you can deploy a virtual machine from a VM Template stored as an item in your local content library.

You can use the `com.vmware.vcenter.vm_template_client.LibraryItems` class or the POST `https://<vCenter_Server_IP>/rest/vcenter/vm-template/library-items/<VM_Template_Item_ID>?action=deploy` HTTP request.

For information about the available and mandatory parameters, see the API Reference documentation.

Prerequisites

- Verify that you have administrative privileges on your vCenter Server instance.
- Verify that you created a vAPI session to your vCenter Server.

Procedure

1. Review the information stored in the VM Template library item.

 You can use the `com.vmware.vcenter.vm_template_client.LibraryItems.get(VM_template_item_ID)` method and pass the ID of your VM Template item or the GET `https://<vCenter_Server_IP>/rest/vcenter/vm-template/library-items/<VM_Template_Item_ID>` HTTP request. If you did not save the ID of your item, you can check the UUID of your VM Template item by using the vSphere Client. The URN ends with the ID of the item and has the following format:
 `urn:vapi:com.vmware.content.library.Item:<VMTemplateItemID>`.

2. Get the ID of the ESXi host on which you want to deploy the VM.

 You can use the `com.vmware.vcenter_client.Host.list()` method or the GET `https://<vCenter_Server_IP>/rest/vcenter/host` HTTP request.

3. Get the ID of the resource pool to which you want to add your VM.

 You can use the `com.vmware.vcenter_client.ResourcePool.list()` class or the `https://<vCenter_Server_IP>/rest/vcenter/resource-pool` HTTP request.

4. Get the ID of the VIRTUAL_MACHINE folder to which you want to add your VM.

 You can use the `com.vmware.vcenter_client.Folder.list()` method or the GET `https://<vCenter_Server_IP>/rest/vcenter/folder` HTTP request.
5 Get the ID of the datastore on which you want to store log, configuration, and disk files of the VM.

You can use the com.vmware.vcenter_client.Datastore.list() method or the GET https://<vCenter_Server_IP>/rest/vcenter/datastore HTTP request.

6 Create a deployment specification.

You can use the com.vmware.vcenter.vm_template_client.LibraryItems.DeploySpec class or the body of the POST https://<vCenter_Server_IP>/rest/vcenter/vm-template/library-items/<VM_Template_Item_ID>?action=deploy HTTP request.

a Specify a name and description of the VM that you want to deploy.

b Specify the place in your inventory on which you want to deploy the VM such as an ESXi host, resource pool, and VM folder.

You can use the com.vmware.vcenter.vm_template_client.LibraryItems.DeployPlacementSpec class or the placement parameter in the body of the request. You must use the IDs of your inventory objects.

c Specify the datastore on which you want to store the log, configuration, and disk files of the VM. You must use the ID of the datastore.

You can use the DeploySpecVmHomeStorage, DeploySpecDiskStorage classes or the vm_home_storage, and disk_storage parameters in the body of the request.

d (Optional) Specify the guest operating system and hardware customization specifications that you want to apply to the VM during the deployment process and include them in the deployment specification.

You can use the GuestCustomizationSpec and HardwareCustomizationSpec classes or the guest_customization and hardware_customization parameters in the body of the request. You can get a list of the guest operating system customization specifications that are available in your vCenter Server by using the com.vmware.vcenter.guest_client.CustomizationSpecs.list() method or the GET https://<vCenter_Server_IP>/rest/vcenter/guest/customization-specs HTTP request.

e Include the placement and storage specifications in the deployment specification.

7 Deploy a VM from your VM Template library item.

You can use the com.vmware.vcenter.vm_template_client.LibraryItems.deploy(template_library_item, spec) method by passing the VM Template library item ID and the deployment specification or by sending the POST https://<vCenter_Server_IP>/rest/vcenter/vm-template/library-items/<VM_Template_Item_ID>?action=deploy request.

If the operation is successful, the API returns the ID of the deployed VM. For information about the available responses, see the API Reference documentation.
Python Example of Deploying a VM from a VM Template Library Item

This example shows how you can deploy a VM from a VM Template library item by using the API. The example is based on the deploy_vm_template.py sample.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

class DeployVmTemplate(SampleBase):
 ...
 def _setup(self):
 # Required arguments
 self.item_name = self.args.itemname
 self.datacenter_name = self.args.datacentername
 self.folder_name = self.args.foldername
 self.resource_pool_name = self.args.resourcepoolname
 self.datastore_name = self.args.datastorename

 # Optional arguments
 self.vm_name = self.args.vmname if self.args.vmname else rand('vm-')

 self.servicemanager = self.get_service_manager()
 self.client = ClsApiClient(self.servicemanager)
 self.helper = ClsApiHelper(self.client, self.skip_verification)

 session = get_unverified_session() if self.skip_verification else None
 self.vsphere_client = create_vsphere_client(server=self.server,
 username=self.username,
 password=self.password,
 session=session)

 def _execute(self):
 # Get the identifiers of the resources used for deployment
 item_id = self.helper.get_item_id_by_name(self.item_name)
 assert item_id
 folder_id = get_folder(self.vsphere_client,
 self.datacenter_name,
 self.folder_name)
 assert folder_id
 resource_pool_id = get_resource_pool(self.vsphere_client,
 self.datacenter_name,
 self.resource_pool_name)
 assert resource_pool_id
 datastore_id = get_datastore_id(self.servicemanager,
 self.datastore_name)
 assert datastore_id

 # Build the deployment specification
 placement_spec = VmtxLibraryItem.DeployPlacementSpec(
 folder=folder_id,
 resource_pool=resource_pool_id)
 vm_home_storage_spec = VmtxLibraryItem.DeploySpecVmHomeStorage(
datastore=datastore_id)
 disk_storage_spec = VmtxLibraryItem.DeploySpecDiskStorage(
 datastore=datastore_id)
 deploy_spec = VmtxLibraryItem.DeploySpec(
 name=self.vm_name,
 placement=placement_spec,
 vm_home_storage=vm_home_storage_spec,
 disk_storage=disk_storage_spec)

 # Deploy a virtual machine from the VM template item
 self.vm_id = self.client.vmtx_service.deploy(item_id, deploy_spec)
 self.vm = get_obj_by_moId(self.servicemanager.content,
 [vim.VirtualMachine], self.vm_id)
 ...

Content Library Support for OVF and OVA Packages

You can use the objects and methods provided by the Content Library API to manage OVF and OVA packages.

Open Virtualization Format (OVF) is an industry standard that describes metadata about a virtual machine image in an XML format. An OVF package includes an XML descriptor file and optionally disk images, resource files (such as ISO files), manifest files, and certificate files.

An OVA package is a single file that contains all OVF package files in archived form. After you upload an OVA package to a content library, the OVA file is converted to the standard OVF package.

When you try to upload signed content to a content library, you might receive preview warnings. Signed content can be either OVF packages or OVA files that contain manifest and certificate files. If you do not respond to the preview warnings, the upload fails. To successfully complete an upload operation, you must ignore any preview warnings by using the `WarningBehavior` class.

With the vSphere Automation API, you can use the virtual machine (VM) and vApp templates from an OVF package in a content library to deploy VMs and virtual appliances on hosts, resource pools, and clusters. You can also use the API to create OVF packages in content libraries from virtual appliances and VMs on hosts, resource pools, and clusters.

When you create library items to store OVF packages, you must set the item type to `ovf`. To comply with the specific standards of the OVF packages, the vSphere Automation API provides the `LibraryItem` class.

This chapter includes the following topics:

- Using the Content Library Service to Handle OVF and OVA Packages
- Using the LibraryItem Service to Execute OVF-Specific Tasks

Using the Content Library Service to Handle OVF and OVA Packages

You can upload an OVF or OVA package to a library item by using the `UpdateSession` interface. The location of the OVF package determines whether you can pull the content from a URL or push the content directly to a content library.

For information about uploading content to library items, see Upload a File from a Local System to a Library Item and Upload a File from a URL to a Library Item.
To download the files that are included in an OVF or OVA package to your local file system, use the DownloadSession interface. For more information, see Download Files to a Local System from a Library Item.

Upload an OVF Package from a URL to a Library Item

You can upload an OVF package from a Web server to a library item.

Note If you try to upload a signed OVF package and it returns preview warnings, you must ignore the preview warnings to complete the upload.

Prerequisites

- Verify that you have created a content library.

Procedure

1. Create an empty library item.
2. Create an update session object.
3. Create an AddSpec object to describe the properties and the upload location of the descriptor file of the OVF package.
4. Link the AddSpec object to the update session.
 - All files that are included in the OVF package are automatically uploaded.
5. Complete the asynchronous transfer.

Python Example of Uploading an OVF Package from a URL to a Library Item

This example is based on the ovf_import_export.py sample file.

This example uses the steps that are described in the Upload an OVF Package from a URL to a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
...# 1 - Create a empty library item to describe the virtual machine.
item_model = library_client.ItemModel()
item_model.name = "ubuntu-vm"
item_model.description = "ubuntu 7.0"
item_model.library_id = my_library_id
item_model.type = "ovf"
client_token = str(uuid.uuid4())
item_stub = library_client.Item(my_stub_config)
item_id = item_stub.create(create_spec=item_model,
client_token=client_token)
```
2 - Create an update session.
update_session_model = item_client.UpdateSessionModel()
update_session_model.library_item_id = item_id
client_token = str(uuid.uuid4())
update_session_stub = update_session_client.UpdateSession(my_stub_config)
session_id = update_session_stub.create(create_spec=update_session_model,
client_token=client_token)

3 - Create a file specification for the OVF envelope file.
file_spec = update_session_client.AddSpec()
file_spec.name = "ubuntu.ovf"
file_spec.source_type = File.SourceType.PULL
endpoint = item_client.TransferEndpoint()
endpoint.uri = "http://www.example.com/images/ubuntu.ovf"
file_spec.source_endpoint = endpoint

4 - Link the file specification to the update session.
update_file_stub = update_session_client.File(my_stub_config)
update_file_stub.File.add(update_session_id=session_id,
file_spec=file_spec)

5 - Initiate the asynchronous transfer.
update_session_stub.complete(session_id)

Upload an OVF Package from a Local File System to a Library Item

You can upload an OVF package from a local file system. This procedure describes how to use the AddSpec object after you have created a library item and initiated an update session.

Note If you try to upload a signed OVF package and it returns preview warnings, you must ignore the preview warnings to complete the upload.

Prerequisites
- Verify that you have created a content library.

Procedure
1 Create a library item.
2 Create an update session.
3 Create an AddSpec object to describe the properties and the upload location of the descriptor file of the OVF package.
4 Link the AddSpec object to the update session.
5 Create an AddSpec object for each VMDK file included in the OVF package.
6 Add all AddSpec objects to the update session.

 Steps 5 and 6 must be repeated for each VMDK file included in the OVF package. If you are uploading a signed OVF package, steps 5 and 6 must also be repeated for the manifest and certificate files included in the OVF package.

7 Initiate the upload operation.

8 Complete the update session.

9 Delete the session.

Python Example of Uploading an OVF Package to a Library Item from Your Local File System

This example is based on the ovf_import_export.py sample file.

This example uses the steps that are described in the Upload an OVF Package from a Local File System to a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

...

1 - Create an empty library item to describe the VM/VApp.
item_model = library_client.ItemModel()
item_model.name = "ubuntu-vm"
item_model.description = "ubuntu 7.0"
item_model.library_id = my_library_id
item_model.type = "ovf"
client_token = str(uuid.uuid4())
item_stub = library_client.Item(my_stub_config)
item_id = item_stub.create(create_spec=item_model, client_token=client_token)

2 - Create an update session.
update_session_model = item_client.UpdateSessionModel()
update_session_model.library_item_id = item_id
client_token = str(uuid.uuid4())
update_session_stub = update_session_client.UpdateSession(my_stub_config)
session_id = update_session_stub.create(create_spec=update_session_model, client_token=client_token)

try :
 # 3 - Create a file spec for the OVF envelope file.
 file_spec = update_session_client.AddSpec()
 file_spec.name = "ubuntu.ovf"
 file_spec.source_type = update_session_client.File.SourceType.PUSH

 # 4 - Link the OVF file spec to the update session.
 update_file_stub = update_session_client.File(my_stub_config)
 file_info = update_file_stub.File.add(update_session_id=session_id, file_spec=file_spec)
 upload_uri = file_info.upload_endpoint.uri

 # 5 - Use HTTP library to push the file, out of band.
Upload an OVA Package to a Library Item

You can upload an OVA file into the content library as an OVF library item.

Prerequisites
- Verify that you have created a content library.

Procedure
1. Specify the OVA filename and location.
2. Create a library item.
3. Set a pointer to the OVA file you want to upload.
4. Create an update session.
5. Obtain preview warnings.
6. Ignore preview warnings, if any.
7. Complete the update session.
8. Delete the session.
Python Example of Uploading an OVA Package to a Library Item

This example is based on the signed_ova_import.py sample file.

This example uses the steps that are described in the Upload an OVA Package to a Library Item procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
...

# 1 - Specify the OVA filename and location.
SIGNED_OVA_FILENAME = 'nostalgia-signed.ova'
SIGNED_OVA_RELATIVE_DIR = '../resources/signedOvaWithCertWarning'

# 2 - Create a new library item in the content library for uploading the files.
self.lib_item_id = self.helper.create_library_item(library_id=self.local_lib_id,
    item_name=self.lib_item_name,
    item_description='Sample template from ova file',
    item_type='ovf')

# 3 - Set a pointer to the OVA file you want to upload.
ova_file_map = self.helper.get_ova_file_map(SIGNED_OVA_RELATIVE_DIR,
    local_filename=SIGNED_OVA_FILENAME)

# 4 - Create a new update session for uploading the files.
session_id = self.client.upload_service.create(
    create_spec=UpdateSessionModel(library_item_id=self.lib_item_id),
    client_token=generate_random_uuid())
self.helper.upload_files_in_session(ova_file_map, session_id)

# 5 - Wait for terminal preview state and obtain preview warnings.
session = self.client.upload_service.get(session_id)
preview_info = session.preview_info

# 6 - Ignore preview warnings on session, if any.
ignore_warning_behaviors = []
for warning_type in preview_warning_types:
    warning_behavior = WarningBehavior(type=warning_type, ignored=True)
    ignore_warning_behaviors.append(warning_behavior)
self.client.upload_service.update(session_id, update_spec=UpdateSessionModel(
    warning_behavior=ignore_warning_behaviors))

# 7 - Complete the update session.
self.client.upload_service.complete(session_id)

# 8 - Delete the session.
self.client.upload_service.delete(session_id)
```
Using the LibraryItem Service to Execute OVF-Specific Tasks

You can deploy virtual machines and vApps on hosts, clusters, and resource pools in your environment. You use the VM templates and vApp templates from an OVF package that is stored as a content library item.

With the vSphere Automation API, you can use the LibraryItem service to deploy virtual machines and virtual applications from library items that contain OVF packages. You can also use the LibraryItem vSphere Automation service to create library items from existing virtual machines and virtual appliances.

Deploy a Virtual Machine or Virtual Appliance from an OVF Package in a Content Library

You can use the LibraryItem service to deploy a virtual machine or virtual appliance on a host, cluster, or resource pool from a library item.

Procedure

1. Create a DeploymentTarget instance to specify the deployment location of the virtual machine or virtual appliance.
2. Instantiate the ResourcePoolDeploymentSpec class to define all necessary parameters for the deployment operation.

 For example, you can assign a name for the deployed virtual machine or virtual appliance, and accept the End User License Agreements (EULAs) to complete the deployment successfully.
3. (Optional) Retrieve information from the descriptor file of the OVF package and use the information during the OVF package deployment.
4. Invoke the deploy method on the LibraryItem service.
5. Verify the outcome of the deployment operation.

Java Example of Deploying a Virtual Machine from a Library Item in a Resource Pool

This example shows how to deploy a virtual machine from a local library item in a resource pool. You can also see how to verify the results of the deployment operation.

This example uses the steps that are described in the Deploy a Virtual Machine or Virtual Appliance from an OVF Package in a Content Library procedure.

Note For related code samples, see the vSphere Automation SDK Java samples at GitHub.

// Create a virtual machine deployment specification to accept any network resource.
ResourcePoolDeploymentSpec deploymentSpec = new ResourcePoolDeploymentSpec();
String vmName = "MyVirtualMachine";
deploymentSpec.setName(vmName);
deploymentSpec.setAcceptAllEULA(true);

// Create a deployment target specification to accept any resource pool.
String clusterName = "myCluster";
ManagedObjectReference clusterMoRef = VimUtil.getCluster(this.vimAuthHelper.getVimPort(),
this.vimAuthHelper.getServiceContent(), clusterName);
DeploymentTarget deploymentTarget = new DeploymentTarget();
deploymentTarget.setResourcePoolId(clusterMoRef.getValue());

// Retrieve the library items OVF information and use it for populating the
// deployment spec instance.
LibraryItem libItemStub = stubFactory.createStub(LibraryItem.class, myStubConfiguration);
OvfSummary ovfSummary = libItemStub.filter(libItemId, deploymentTarget);
deploymentSpec.setAnnotation(ovfSummary.getAnnotation());
String clientToken = UUID.randomUUID().toString();
DeploymentResult result = libItemStub.deploy(clientToken,libItemId,
deploymentTarget,
deploymentSpec);

// Verify the status of the resource deployment.
System.out.printf("Resource Type=%s (ID=%s) status: ",
 result.getResourceId().getType(),
 result.getResourceId().getId());
if (result.getSucceeded() == true) {
 System.out.println("Resource instantiated.");
} else {
 System.out.println("Instantiation failed.");
}

Python Example of Deploying a Virtual Machine from a Library Item on a
Resource Pool

This example is based on the deploy.ovf_template.py sample file.

This example uses the steps that are described in the Deploy a Virtual Machine or Virtual Appliance from
an OVF Package in a Content Library procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK
Python samples at GitHub.

...

Create a VM deployment specification to accept any network resource.
deployment_spec = ovf_client.LibraryItem.ResourcePoolDeploymentSpec()
deployment_spec.accept_all_eula = True

Create deployment target spec to accept any resource pool.
target_spec = ovf_client.LibraryItem.DeploymentTarget()

Initiate synchronous deployment operation.
item_stub = ovf_client.LibraryItem(my_stub_config)
result = item_stub.deploy(my_library_item_id,
 target_spec,
 deployment_spec,
 client_token=str(uuid.uuid4())

Verify deployment status.
print("Resource Type={} (ID={}) status:{}".format(result.resource_id.type, result.resource_id.id))
if result.succeeded == True :
 print("Resource instantiated.")
else :
 print("Instantiation failed.")
if result.error is not None :
 for error in result.error.errors :
 print("Error {}".format(error.message))
 if len(result.error.warnings) > 0 :
 print("Warnings:")
 for warning in result.error.warnings :
 print("{}".format(warning.message))
 if len(result.error.information) > 0 :
 print("Messages:")
 for info in result.error.information :
 for message in info.messages :
 print("{}".format(message))

Create an OVF Package in a Content Library from a Virtual Machine

You can create library items from existing virtual machines or virtual appliances. Use those library items later to deploy virtual machines and virtual appliances on hosts and clusters in the vSphere Automation environment.

Procedure

1. Create a DeployableIdentity instance to specify the source virtual machine or virtual appliance to be captured in an OVF package.

2. Create a CreateTarget instance to identify the content library where the OVF package is stored.

3. Create a CreateSpec instance to specify the properties of the OVF package.

4. Initiate a synchronous create operation by invoking the create function of the LibraryItem service.

5. Verify the results of the create operation.

Java Example of Creating an OVF Package in a Content Library from a Virtual Machine

This example shows how to capture a virtual machine in an OVF package and store the file in a new library item in a specified library.
This example uses the steps that are described in the Create an OVF Package in a Content Library from a Virtual Machine procedure.

Note For related code samples, see the vSphere Automation SDK Java samples at GitHub.

```java
...

// Specify the resource to be captured.
LibraryItemTypes.DeployableIdentity deployableIdentity = new LibraryItemTypes.DeployableIdentity();
deployableIdentity.setType("VirtualMachine");
deployableIdentity.setId("vm-32");

// Create a target spec to identify a library to hold the new item.
LibraryItemTypes.CreateTarget createTarget = new LibraryItemTypes.CreateTarget();
createTarget.setLibraryId(myLibraryId);

// Specify OVF properties.
LibraryItemTypes.CreateSpec createSpec = new LibraryItemTypes.CreateSpec();
createSpec.setName("snap-32");
createSpec.setDescription("Snapshot of VM-32");

// Initiate synchronous capture operation.
LibraryItem itemStub = myStubFactory.createStub(LibraryItem.class, myStubConfiguration);
String clientToken = UUID.randomUUID().toString();
LibraryItemTypes.CreateResult result = itemStub.create(clientToken, deployableIdentity, createTarget, createSpec);

// Verify capture status.
System.out.printf("Resource Type=%s (ID=%s) status:",
    deployableIdentity.getType(),
    deployableIdentity.getId());
if (result.getSucceeded() == true) {
    System.out.println("Resource captured.");
} else {
    System.out.println("Capture failed.");
}

if (result.getError() != null) {

    for (OvfError error : result.getError().getErrors()) {
        System.out.printf("Error: %s", error.getMessage().toString());
    }

    for (OvfWarning warning : result.getError().getWarnings()) {
        System.out.printf("Warning: %s", warning.getMessage().toString());
    }

    for (OvfInfo info : result.getError().getInformation()) {
        List<LocalizableMessage> messages = info.getMessage();
    }
}
```
for (LocalizableMessage message : messages) {
 System.out.printf("Message: %s", message.toString());
}

Python Example of Creating an OVF Package in a Content Library from a Virtual Machine

This example shows how to capture a virtual machine in an OVF package and store the files in a new library item in a specified library.

This example uses the steps that are described in the Create an OVF Package in a Content Library from a Virtual Machine procedure.

Note For related code samples, see the vSphere Automation SDK Python samples at GitHub.

Specify the resource to be captured.
deployable_identity = ovf_client.LibraryItem.DeployableIdentity();
deployable_identity.type = "VirtualMachine"
deployable_identity.id = "vm-32"

Create a target spec to identify a library to hold the new item.
create_target = ovf_client.LibraryItem.CreateTarget()
create_target.library_id = my_library_id

Specify OVF properties.
create_spec = ovf_client.LibraryItem.CreateSpec()
create_spec.name = "snap-32"
create_spec.description = "Snapshot of VM-32"

Initiate synchronous capture operation.
lib_item_stub = ovf_client.LibraryItem(my_stub_config)
client_token = str(uuid.uuid4())
result = lib_item_stub.create(source=deployable_identity,
target=create_target,
create_spec=create_spec,
client_token=client_token)

Verify capture status.
print("Resource Type={} (ID={}) status:",".format(deployable_identity.type, deployable_identity.id))

if result.succeeded == True :
 print("Resource captured.")
else :
 print("Capture failed.")
if result.error is not None :
 for error in result.error.errors :
 print("Error {}".format(error.message))
 if len(result.error.warnings) > 0 :
 print("Warnings:")
 for warning in result.error.warnings :
print("{}").format(warning.message))
if len(result.error.information) > 0 :
 print("Messages:")
 for info in result.error.information :
 for message in info.messages :
 print("{}").format(message))
Tagging Service

The vSphere Automation Tagging Service supports the definition of tags that you can associate with vSphere objects or vSphere Automation resources. vSphere has a tagging feature but no public API to manage tags. With the vSphere Automation SDK, you can manage tags programmatically.

For example, to tag your VMs by guest operating system type, you might create a category called operating system, and specify that it applies to VMs only. You might also specify that only a single tag can be applied to a VM at any time. The tags in this category might be Windows, Linux, and Mac OS.

- **Creating Tags**
 When you create a tag, you create a tag category and create a tag under the category. After you create the tag, you can associate the tag with an object.

- **Creating Tag Associations**
 After you create a tag category and create a tag within the category, you can associate the tag with a vSphere managed object or a vSphere Automation resource. An association is a simple link that contains no data of its own. You can enumerate objects that are attached to a tag or tags that are attached to an object.

- **Updating a Tag**
 To update a tag, you must create an update spec for the tag. In the update spec, you set values for the fields to be changed, and omit values for the other fields. When you do an update operation using the update spec, only the fields that contain values are changed.

Creating Tags

When you create a tag, you create a tag category and create a tag under the category. After you create the tag, you can associate the tag with an object.

Tags and categories have global scope. The Platform Services Controller stores tags and categories makes them available to any vCenter Server system that is registered with the Platform Services Controller.

- **Creating a Tag Category**
 You create tags in the context of a tag category. You must create a category before you can add tags within that category.

- **Creating a Tag**
 After you create a tag category, you can create tags within that category.
Creating a Tag Category

You create tags in the context of a tag category. You must create a category before you can add tags within that category.

A tag category has the following properties:

- name
- description
- cardinality, or how many tags it can contain
- the types of elements to which the tags can be assigned

You can associate tags with both vSphere API managed objects and VMware vSphere Automation API resources.

Java Example of Creating a Tag Category

This example is based on code in the TaggingWorkflow.java sample file.

This example is based on the information that is provided in Creating a Tag Category.

The category create() function returns an identifier that you use when you create a tag for that category. The empty set for the associable types indicates that any object type can be associated with a tag in this category.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...
Category categoryStub = myStubFactory.createStub(Category.class,
    myStubConfiguration);

// Set up a tag category create spec.
CategoryTypes.CreateSpec createSpec = new CategoryTypes.CreateSpec();
createSpec.setName("favorites");
createSpec.setDescription("My favorite virtual machines.");
createSpec.setCardinality(CategoryModel.Cardinality.MULTIPLE);
Set<String> asociableTypes = new HashSet<String>();
createSpec.setAssociableTypes(associableTypes);
String newCategoryId = categoryStub.create(createSpec);
```

.NET Example of Creating a Tag Category

This example is based on code in the TaggingWorkflow.cs sample file.

This example is based on the information that is provided in Creating a Tag Category.
The category Create() function returns an identifier that you use when you create a tag for that category. The empty set for the associable types indicates that any object type can be associated with a tag in this category.

Note For a complete and up-to-date version of the sample code, see the [vSphere Automation SDK .NET samples](https://github.com/vmware/vsphere-automation-sdk-net) at GitHub.

```csharp
var categoryStub = myStubFactory.CreateStub<Category>(myStubConfiguration);

// Set up a tag category create spec.
var createSpec = new CategoryTypes.CreateSpec();
createSpec.SetName("favorites");
createSpec.SetDescription("My favorite virtual machines.");
createSpec.SetCardinality(CategoryModel.Cardinality.MULTIPLE);
HashSet<String> associableTypes = new HashSet<String>();
createSpec.SetAssociableTypes(associableTypes);

// Create the tag category.
String newCategoryId = categoryStub.Create(createSpec);
```

Python Example of Creating a Tag Category

This example is based on code in the tagging_workflow.py sample file.

This example is based on the information that is provided in Creating a Tag Category.

The category create() function returns an identifier that you use when you create a tag for that category. The empty set for the associable types indicates that any object type can be associated with a tag in this category.

Note For a complete and up-to-date version of the sample code, see the [vSphere Automation SDK Python samples](https://github.com/vmware/vsphere-automation-sdk-python) at GitHub.

```python
...

category_stub = tagging_client.Category(my_stub_config)

# Set up a tag category create spec.
tc_create_spec = category_stub.CreateSpec(name = 'favorites',
                                          description = 'My favorite virtual machines',
                                          cardinality = CategoryModel.Cardinality.MULTIPLE,
                                          associable_types = set())

# Create the tag category.
fav_category_id = category_stub.create(create_spec)
```
Perl Example of Creating a Tag Category

This example is based on code in the `tagging_workflow.pl` sample file.

This example is based on the information that is provided in Creating a Tag Category.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
...
my $create_spec = new
  Com::Vmware::Cis::Tagging::Category::CreateSpec();
$create_spec->set_name(
  'name' => 'favorites');
$create_spec->set_description(
  'description' => 'My favorite virtual machines');
$create_spec->set_cardinality(
  'cardinality' =>
    Com::Vmware::Cis::Tagging::CategoryModel::Cardinality::MULTIPLE);
$create_spec->set_associable_types( 'associable_types' => [] );
$my_category_id = $my_category_stub->create('create_spec' => $create_spec );
```

Creating a Tag

After you create a tag category, you can create tags within that category.

A tag has the following properties:

- name
- description
- category ID

Java Example of Creating a Tag

This example is based on code in the `TaggingWorkflow.java` sample file.

This example creates a tag specification and then uses it to create the tag. The tag specification references the category identifier that was returned from the category create operation. Use the returned tag identifier for subsequent operations on the tag.
This example is based on the information that is provided in Creating a Tag.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
... 
Tag tagStub = myStubFactory.createStub(Tag.class,
        myStubConfiguration);

// Set up a tag create spec.
TagTypes.CreateSpec spec = new TagTypes.CreateSpec();
spec.setName("red");
spec.setDescription("My favorite color");
spec.setCategoryId(newCategoryId);

String tagId = tagStub.create(spec);
```

.NET Example of Creating a Tag

This example is based on code in the TaggingWorkflow.cs sample file.

This example creates a tag specification and then uses it to create the tag. The tag specification references the category identifier that was returned from the category create operation. Use the returned tag identifier for subsequent operations on the tag.

This example is based on the information that is provided in Creating a Tag.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
... 
var tagStub = myStubFactory.CreateStub<Tag>(myStubConfiguration);

// Set up a tag create spec.
var createSpec = new TagTypes.CreateSpec();
createSpec.SetName("red");
createSpec.SetDescription("My favorite color");
createSpec.SetCategoryId(newCategoryId);

String tagId = tagStub.Create(spec);
```

Python Example of Creating a Tag

This example is based on code in the tagging_workflow.py sample file.

This example creates a tag specification and then uses it to create the tag. The tag specification references the category identifier that was returned from the category create operation. Use the returned tag identifier for subsequent operations on the tag.
This example is based on the information that is provided in Creating a Tag.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```
...

# Set up a tag create spec.
tag_create_spec = tag_stub.CreateSpec(name='red',
                                     description='My favorite color',
                                     category_id=fav_category_id)

# Create the tag.
tag_stub = tagging_client.Tag(my_stub_config)
tag_id = tag_stub.create(create_spec)
```

Perl Example of Creating a Tag

This example is based on code in the tagging_workflow.pl sample file.

This example creates a tag specification and then uses it to create the tag. The tag specification references the category identifier that was returned from the category create operation. Use the returned tag identifier for subsequent operations on the tag.

This example is based on the information that is provided in Creating a Tag.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```
...

# Create a tag specification for the new tag.
my $create_spec = new Com::Vmware::Cis::Tagging::Tag::CreateSpec();
$create_spec->set_name(  
    'name' => 'red');
$create_spec->set_description(  
    'description' => 'My favorite color');
$create_spec->set_category_id(  
    'category_id' => $my_category_id);

# Use the tag specification in a create() call.
my $tag_stub = $my_Stub_factory->create_stub(  
    'service_name' => 'Com::Vmware::Cis::Tagging::Tag',
    'stub_config' => $my_stub_config);
$my_tag_id = $tag_stub->create(  
    'create_spec' => $create_spec);
```
Creating Tag Associations

After you create a tag category and create a tag within the category, you can associate the tag with a vSphere managed object or a vSphere Automation resource. An association is a simple link that contains no data of its own. You can enumerate objects that are attached to a tag or tags that are attached to an object.

Tag associations are local to a vCenter Server instance. When you request a list of tag associations from a vCenter Server system, it enumerates only the associations that it has stored.

When you associate a tag with an object, the object's type must match one of the associable types specified for the category to which the tag belongs.

- **Assign the Tag to a Content Library**
 After you create a tag, you can assign the tag to a vSphere Automation resource.

- **Assign a Tag to a Cluster**
 After you create a tag, you can assign the tag to a vSphere managed object. Tags make the inventory objects in your virtual environment more sortable and searchable.

Assign the Tag to a Content Library

After you create a tag, you can assign the tag to a vSphere Automation resource.

Procedure

1. Construct a dynamic object identifier for the library.
 - The dynamic identifier includes the type and ID of the object.
2. Attach the tag to the content library.

Java Example of Assigning a Tag to a Content Library

This example is based on code in the TaggingWorkflow.java sample file.

This example uses the steps that are described in the Assign the Tag to a Content Library procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
// 1 - Create a dynamic type ID for the content library.
DynamicID libraryDynamicId = new DynamicID(Library.RESOURCE_TYPE,
                                          myLibrary.getId());

// 2- Attach the tag to the ClusterComputeResource managed object.
```
TagAssociation tagAssociationStub = myStubFactory.createStub(TagAssociation.class,
 myStubConfig);
tagAssociationStub.attach(myLibrary.getId(),
 libraryDynamicId);

.NET Example of Assigning a Tag to a Content Library
This example is based on code in the TaggingWorkflow.cs sample file.
This example uses the steps that are described in the Assign the Tag to a Content Library procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK .NET samples at GitHub.

// 1 - Create a dynamic type ID for the content library.
DynamicID libraryDynamicId = new DynamicID(Library.RESOURCE_TYPE,
 myLibrary.GetId());

// 2- Attach the tag to the ClusterComputeResource managed object.
var tagAssociationStub = myStubFactory.CreateStub<TagAssociation>(myStubConfiguration);
tagAssociationStub.Attach(myLibrary.GetId(),
 libraryDynamicId);

Python Example of Assigning a Tag to a Content Library
This example is based on code in the tagging_workflow.py sample file.
This example uses the steps that are described in the Assign the Tag to a Content Library procedure.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

1 - Create a dynamic type ID for the content library.
library_dynamic_id = DynamicID(type=Library.RESOURCE_TYPE,
 id=my_library.id)

2- Attach the tag to the ClusterComputeResource managed object.
tag_association_stub = tagging_client.TagAssociationStub(my_stub_config)
tag_association_stub.attach(tag_id,
 library_dynamic_id)

Assign a Tag to a Cluster
After you create a tag, you can assign the tag to a vSphere managed object. Tags make the inventory objects in your virtual environment more sortable and searchable.
This procedure describes the steps for applying tag a to a cluster object in your inventory.
Prerequisites

Obtain the managed object identifier for the specified cluster.

To get the managed object identifier of the ClusterComputeResource, you must access vCenter Server by using the vSphere Web Services API. For more information about how to access Web Services, see Create a Web Services Session.

Procedure

1. Construct a dynamic object identifier for the cluster.

 The dynamic identifier includes the type and ID of the managed object reference.

2. Attach the tag to the cluster.

Java Example of Assigning a Tag to a Cluster

This example is based on code in the TaggingWorkflow.java sample file.

This example is based on the information that is provided in Assign a Tag to a Cluster.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...

// 1 - Determine the MOID of the ClusterComputeResource from its name.
ManagedObjectReference clusterMoRef = VimUtil.getCluster(vimPort,
   serviceContent,
   myClusterName);

// 2 - Create a dynamic type ID for the cluster.
DynamicID clusterDynamicId = DynamicID(clusterMoRef.getType(),
   clusterMoRef.getValue());

// 3 - Attach the tag to the ClusterComputeResource managed object.
TagAssociation tagAssociationStub = myStubFactory.createStub(TagAssociation.class,
   myStubConfig);
tagAssociationStub.attach(tagId,
   clusterDynamicId);
```

Python Example of Assigning a Tag to a Cluster

This example is based on code in the tagging_workflow.py sample file.

```python
...

// 1 - Determine the MOID of the ClusterComputeResource from its name.
ManagedObjectReference clusterMoRef = VimUtil.getCluster(vimPort,
   serviceContent,
   myClusterName);

// 2 - Create a dynamic type ID for the cluster.
DynamicID clusterDynamicId = DynamicID(clusterMoRef.getType(),
   clusterMoRef.getValue());

// 3 - Attach the tag to the ClusterComputeResource managed object.
TagAssociation tagAssociationStub = myStubFactory.createStub(TagAssociation.class,
   myStubConfig);
tagAssociationStub.attach(tagId,
   clusterDynamicId);
```
This example is based on the information that is provided in Assign a Tag to a Cluster.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
...
# 1 - Determine the MOID of the ClusterComputeResource from its name.
cluster_object = get_obj(service_content,
                          [vim.ClusterComputeResource],
                          my_cluster_name)
cluster_moid = cluster_object._GetMoId()

# 2 - Create a dynamic type ID for the cluster.
dynamic_id = DynamicID(type='ClusterComputeResource', id=cluster_moid)

# 3 - Attach the tag to the ClusterComputeResource managed object.
tag_association_stub = tagging_client.TagAssociation(my_stub_config)
tag_association_stub.attach(tag_id=tag_id,
                            object_id=dynamic_id)
```

Perl Example of Assigning a Tag to a Cluster

This example is based on code in the tagging_workflow.pl sample file.

This example is based on the information that is provided in Assign a Tag to a Cluster.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Perl samples at GitHub.

```perl
...
# Use vSphere SDK for Perl to find cluster MORef.
my $cluster_view = Vim::find_entity_view(
  view_type => 'ClusterComputeResource',
  filter => { name => $my_cluster_name });

# Convert MORef to dynamic ID.
my $moref = $cluster_view{'mo_ref'};
my $dynamic_id = new Com::Vmware::Vapi::Std::DynamicID();
$dynamic_id->set_type($moref->{'type'});
$dynamic_id->set_id($moref->{'value'});

# Attach tag ID to dynamic ID of target.
my $association_stub = $my_stub_factory->create_stub(
  'service_name' => 'Com::Vmware::Cis::Tagging::Association',
  'stub_config' => $my_stub_config);
$association_stub->attach('tag_id' => $my_tag_id, 'object_id' => $dynamic_id);
```
Updating a Tag

To update a tag, you must create an update spec for the tag. In the update spec, you set values for the fields to be changed, and omit values for the other fields. When you do an update operation using the update spec, only the fields that contain values are changed.

For example, you might use a timestamp in a tag description to identify a resource's last reconfiguration. After reconfiguring the resource, you update the tag description to contain the current time.

Java Example of Updating a Tag Description

This example is based on code in the TaggingWorkflow.java sample file.

This example adds timestamp in a tag description to identify when a resource was last reconfigured. The tag description is updated with the timestamp after the resources is reconfigured.

This example is based on the information that is provided in Updating a Tag.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
String newDateTime = Dateformat.getDateInstance().format(new Date());
String newDescription = String.format("Server tag updated at (%s).", newDateTime);

TagTypes.UpdateSpec updateSpec = new TagTypes.UpdateSpec();
updateSpec.setDescription(newDescription);
tagStub.update(myTagId, updateSpec);
```

.NET Example of Updating a Tag Description

This example is based on code in the TaggingWorkflow.cs sample file.

This example adds timestamp in a tag description to identify when a resource was last reconfigured. The tag description is updated with the timestamp after the resources is reconfigured.

This example is based on the information that is provided in Updating a Tag.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
// Format current time.
String newDescription = String.format("Server tag updated at (\{0\}).", DateTime.Now);

// Create update spec to change Description field.
TagTypes.UpdateSpec updateSpec = new TagTypes.UpdateSpec();
updateSpec.SetDescription(newDescription);
```
// Apply update spec to tag.
var tagStub = myStubFactory.CreateStub<Tag>(myStubConfiguration);
tagStub.Update(myTagId, updateSpec);

Python Example of Updating a Tag Description

This example is based on code in the tagging_workflow.py sample file.

This example adds timestamp in a tag description to identify when a resource was last reconfigured. The tag description is updated with the timestamp after the resources is reconfigured.

This example is based on the information that is provided in Updating a Tag.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

...
tag_stub = tagging_client.Tag(my_stub_config

1 - Format the current time.
date_time = time.strftime('%d/%m/%Y %H:%M:%S')
description = 'Server tag updated at ' + date_time

2 - Set up a tag update spec.
tag_update_spec = tag_stub.UpdateSpec()
tag_update_spec.description = description

3 - Apply the update spec to change the tag description.
tag_stub.update(tag_id, tag_update_spec)
A virtual machine is a software computer that, like a physical computer, runs an operating system and applications. The virtual machine consists of a set of specification and configuration files and is backed by the physical resources of a host. Each virtual machine encapsulates a complete computing environment and runs independently of the underlying hardware.

Starting with vSphere 6.5, you can configure virtual machine settings and perform power operations through the vSphere Automation SDKs.

This chapter includes the following topics:
- Filtering Virtual Machines
- Create a Virtual Machine
- Configuring a Virtual Machine
- Performing Virtual Machine Power Operations

Filtering Virtual Machines

You can retrieve a list of virtual machines that match a specific filter or a group of up to one thousand virtual machines available in a specific vCenter Server instance.

You can retrieve a list of up to one thousand virtual machine IDs for a single vCenter Server instance by filtering them based on a specific requirement, such as a host, cluster, datacenter, or resource pool on which the VMs are running.

Call the list methods of the VM service to retrieve only a list of the virtual machines that match your specific criteria. The method takes as parameter the VMTypes.FilterSpec instance that you can use to describe the virtual machine filter.

Java Example of Filtering Virtual Machines

The code example is based on the VmHelper.java sample file.

The following code example shows how you can retrieve the VM ID of a virtual machine with a specific name.
This example uses the steps that are described in Filtering Virtual Machines.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...
public static String getVM(
    StubFactory stubFactory, StubConfiguration sessionStubConfig,
    String vmName) {
    VM vmService = stubFactory.createStub(VM.class, sessionStubConfig);

    // Get summary information about the virtual machine
        .setNames(Collections.singleton(vmName)).build();
    List<VMTypes.Summary> vmList = vmService.list(vmFilterSpec);
    assert vmList.size() > 0 && vmList.get(0).getName().equals(vmName) :
        "VM with name " + vmName + " not found";

    return vmList.get(0).getVm();
}
...
```

Python Example of Filtering Virtual Machines

This example is based on the code in the vm_helper.py sample file.

This example uses the steps that are described in Filtering Virtual Machines.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
...

def get_vms(stub_config, vm_names):
    """Return identifiers of a list of vms""
    vm_svc = VM(stub_config)
    vms = vm_svc.list(VM.FilterSpec(names=vm_names))

    if len(vms) == 0:
        print('No vm found')
        return None

    print("Found VMs '{}" ({})".format(vm_names, vms))
    return vms
```

Create a Virtual Machine

You can create a virtual machine by using the VM.create method. The method takes as parameter a CreateSpec instance that allows you to specify the attributes of the virtual machine.
To create a virtual machine you must specify the virtual machine attributes by using the CreateSpec class. For example, you can specify a name, boot options, networking, and memory for the virtual machine. See Configuring a Virtual Machine.

All attributes are optional except the virtual machine placement information that you must provide by using the PlacementSpec class. Use the virtual machine placement specification to set the datastore, cluster, folder, host, or resource pool of the created virtual machine and make sure that all these vSphere objects are located in the same data center in a vCenter Server instance.

For more information refer to the API Reference documentation inside the SDK.

Java Example of Creating a Basic Virtual Machine

This example is based on the code in the CreateBasicVM.java sample file.

This example uses the steps that are described in Create a Virtual Machine.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
private void createBasicVM(
    VMTypes.PlacementSpec vmPlacementSpec, String standardNetworkBacking) {
    // Create the scsi disk as a boot disk
    DiskTypes.CreateSpec bootDiskCreateSpec =
        new DiskTypes.CreateSpec.Builder().setType(
            DiskTypes.HostBusAdapterType.SCSI)
            .setScsi(new ScsiAddressSpec.Builder(0l).setUnit(0l)
            .build())
            .setNewVmdk(new DiskTypes.VmdkCreateSpec()).build();

    // Create a data disk
    DiskTypes.CreateSpec dataDiskCreateSpec =
        new DiskTypes.CreateSpec.Builder().setNewVmdk(
            new DiskTypes.VmdkCreateSpec()).build();
    List<DiskTypes.CreateSpec> disks = Arrays.asList(bootDiskCreateSpec, dataDiskCreateSpec);

    // Create a nic with standard network backing
    EthernetTypes.BackingSpec nicBackingSpec =
        new EthernetTypes.BackingSpec.Builder(
            BackingType.STANDARD_PORTGROUP).setNetwork(
            standardNetworkBacking).build();
    EthernetTypes.CreateSpec nicCreateSpec =
        new EthernetTypes.CreateSpec.Builder().setStartConnected(true)
            .setBacking(nicBackingSpec).build();
    List<EthernetTypes.CreateSpec> nics = Collections.singletonList(nicCreateSpec);

    // Specify the boot order
```
List<DeviceTypes.EntryCreateSpec> bootDevices = Arrays.asList(
 new DeviceTypes.EntryCreateSpec.Builder(DeviceTypes.Type.ETHERNET)
 .build(),
 new DeviceTypes.EntryCreateSpec.Builder(DeviceTypes.Type.DISK)
 .build());
VMTypes.CreateSpec vmCreateSpec = new VMTypes.CreateSpec.Builder(
 this.vmGuestOS).setName(BASIC_VM_NAME)
 .setBootDevices(bootDevices)
 .setPlacement(vmPlacementSpec)
 .setNics(nics)
 .setDisks(disks)
 .build();
System.out.println("\n
Example: Creating Basic VM with spec:\n" + vmCreateSpec);
this.basicVMId = vmService.create(vmCreateSpec);
...

Python Example of Creating a Basic Virtual Machine

This example is based on the code in the create_basic_vm.py sample file.

This example uses the steps that are described in [Create a Virtual Machine](#).

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
... def create_basic_vm(stub_config, placement_spec, standard_network):
    
    Create a basic VM.

    Using the provided PlacementSpec, create a VM with a selected Guest OS
    and provided name.

    Create a VM with the following configuration:
    * Create 2 disks and specify one of them on scsi0:0 since it's the boot disk
    * Specify 1 ethernet adapter using a Standard Portgroup backing
    * Setup for PXE install by selecting network as first boot device

    Use guest and system provided defaults for most configuration settings.
    
    guest_os = testbed.config['VM_GUESTOS']

    boot_disk = Disk.CreateSpec(type=Disk.HostBusAdapterType.SCSI,
        scsi=ScsiAddressSpec(bus=0, unit=0),
        new_vmdk=Disk.VmdkCreateSpec())
    data_disk = Disk.CreateSpec(new_vmdk=Disk.VmdkCreateSpec())

    nic = Ethernet.CreateSpec(
        start_connected=True,
        backing=Ethernet.BackingSpec(}
```
type=Ethernet.BackingType.STANDARD_PORTGROUP,
 network=standard_network))

 boot_device_order = [BootDevice.EntryCreateSpec(BootDevice.Type.ETHERNET),
 BootDevice.EntryCreateSpec(BootDevice.Type.DISK)]

vm_create_spec = VM.CreateSpec(name=vm_name,
 guest_os=guest_os,
 placement=placement_spec,
 disks=[boot_disk, data_disk],
 nics=[nic],
 boot_devices=boot_device_order)

print('Example: create_basic_vm: Creating a VM using spec\n------')
print(pp(vm_create_spec))
print('------')

vm_svc = VM(stub_config)
vm = vm_svc.create(vm_create_spec)

print("create_basic_vm: Created VM '{}' ({}).format(vm_name, vm))

vm_info = vm_svc.get(vm)
print('{} -> {}'.format(vm, pp(vm_info)))

return vm

...

Configuring a Virtual Machine

You can configure a virtual machine during creation. You can also reconfigure an existing virtual machine by adding or changing the type of the storage controllers, configure the virtual disks, boot options, CPU and memory information, and networks.

Name and Placement

You specify the display name and the location of the virtual machine by using the CreateSpec and PlacementSpec classes.

When you create your virtual machine, use the setName method of the CreateSpec class to pass as argument the display name of the virtual machine.

You must create also a PlacementSpec instance that describes the location of the virtual machine in regards to the resources of a given vCenter Server instance. Use the setPlacement(PlacementSpec placement) method of the CreateSpec class to set the placement information for the virtual machine. You can set one or all of the following vSphere resources: datastore, cluster, folder, host, and resource pool.
Java Example of Configuring the Name and Placement of a Virtual Machine

This example is based on the code in the CreateDefaultVM.java and PlacementHelper.java sample files.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
private static final String DEFAULT_VM_NAME = "Sample-Default-VM";
private VM vmService;
private GuestOS vmGuestOS = GuestOS.WINDOWS_9_64;
private String defaultVMId;

public VMTypes.PlacementSpec getPlacementSpecForCluster(
    StubFactory stubFactory, StubConfiguration sessionStubConfig,
    String datacenterName, String clusterName,
    String vmFolderName, String datastoreName) {

    String clusterId =
        ClusterHelper.getCluster(stubFactory,
            sessionStubConfig,
            datacenterName,
            clusterName);
    System.out.println("Selecting cluster " + clusterName + "(id="
        + clusterId + ")");

    String vmFolderId =
        FolderHelper.getFolder(stubFactory,
            sessionStubConfig,
            datacenterName,
            vmFolderName);
    System.out.println("Selecting folder " + vmFolderName + "(id="
        + vmFolderId + ")");

    String datastoreId =
        DatastoreHelper.getDatastore(stubFactory,
            sessionStubConfig,
            datacenterName,
            datastoreName);
    System.out.println("Selecting datastore " + datastoreName + "(id="
        + datastoreId + ")");

    /*
    * Create the virtual machine placement spec with the datastore, resource pool,
    * cluster and vm folder
    */
    VMTypes.PlacementSpec vmPlacementSpec = new VMTypes.PlacementSpec();
    vmPlacementSpec.setDatstore(datastoreId);
```
vmPlacementSpec.setCluster(clusterId);
vmPlacementSpec.setFolder(vmFolderId);

 return vmPlacementSpec;
}

private void createDefaultVM() {
 VMTypes.PlacementSpec vmPlacementSpec =
 this.getPlacementSpecForCluster(
 this.vapiAuthHelper.getStubFactory(),
 this.sessionStubConfig,
 this.datacenterName,
 this.clusterName,
 this.vmFolderName,
 this.datastoreName);

 VMTypes.CreateSpec vmCreateSpec =
 new VMTypes.CreateSpec.Builder(this.vmGuestOS)
 .setName(DEFAULT_VM_NAME)
 .setPlacement(vmPlacementSpec)
 .build();

 ...
}

Python Example of Configuring the Placement of a Virtual Machine

This example is based on the code in the vm_placement_helper.py sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

... def get_placement_spec_for_resource_pool(stub_config,
 datacenter_name,
 vm_folder_name,
 datastore_name):
 ResourcePool resource_pool = resource_pool_helper.get_resource_pool(stub_config,
 datacenter_name)
 Folder folder = folder_helper.get_folder(stub_config,
 datacenter_name,
 vm_folder_name)
 Datastore datastore = datastore_helper.get_datastore(stub_config,
 datacenter_name,
 datastore_name)
Boot Options

You can configure the boot options of a virtual machine by using the setBoot(CreateSpec boot) method of the CreateSpec class.

The method takes as argument the BootTypes.CreateSpec class. You can select one of the following settings when booting the virtual machine:

- **Delay** - Indicates a delay in milliseconds before starting the firmware boot process when the virtual machine is powered on.
- **Retry** - Indicates whether the virtual machine automatically retries to boot after a failure.
- **Retry delay** - Indicates a delay in milliseconds before retrying the boot process after a failure.
- **Enter setup mode** - If set to true, indicates that the firmware boot process automatically enters BIOS setup mode the next time the virtual machine boots. The virtual machine resets this flag to false once it enters setup mode.
- **EFI legacy boot** - If set to true, indicates that the EFI legacy boot mode is used.

Java Example of Configuring the Boot Options of a Virtual Machine

This example is based on the code in the BootConfiguration.java sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.
// Print the current boot configuration
System.out.println("\\n\\n#### Print the original Boot Info");
BootTypes.Info bootInfo = this.bootService.get(this.vmId);
System.out.println(bootInfo);

// Save the current boot info to verify that we have cleaned up properly
this.originalBootInfo = bootInfo;
System.out.println(bootInfo);

System.out.println("\\n\\n#### Example: Update firmware to EFI for boot configuration.");
BootTypes.UpdateSpec bootUpdateSpec = new BootTypes.UpdateSpec.Builder()
 .setType(BootTypes.Type.EFI)
 .build();
this.bootService.update(this.vmId, bootUpdateSpec);
System.out.println(bootUpdateSpec);
bootInfo = this.bootService.get(this.vmId);
System.out.println(bootInfo);

System.out.println("\\n\\n#### Example: Update boot firmware to tell it to enter setup"
 + " mode on next boot.");
bootUpdateSpec = new BootTypes.UpdateSpec.Builder()
 .setEnterSetupMode(true)
 .build();
this.bootService.update(this.vmId, bootUpdateSpec);
System.out.println(bootUpdateSpec);
bootInfo = this.bootService.get(this.vmId);
System.out.println(bootInfo);

System.out.println("\\n\\n#### Example: Update firmware to introduce a delay in boot "
 + "process and automatically reboot after a failure to boot, "
 + "retry delay = 30000 ms.");
bootUpdateSpec = new BootTypes.UpdateSpec.Builder()
 .setDelay(10000l)
 .setRetry(true)
 .setRetryDelay(30000l)
 .build();
this.bootService.update(this.vmId, bootUpdateSpec);
bootInfo = this.bootService.get(this.vmId);
System.out.println(bootInfo);

...
Python Example of Configuring the Boot Options

The following example is based on the code of the `boot.py` sample file.

Note For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
...

Demonstrates how to configure the settings used when booting a virtual machine.

Sample Prerequisites:
The sample needs an existing VM.

```
vm = None
vm_name = None
stub_config = None
boot_svc = None
cleardata = False
orig_boot_info = None

```

```python
def run():
 global vm
 vm = get_vm(stub_config, vm_name)
 if not vm:
 exit('Sample requires an existing vm with name ({}). Please create the vm first.'.format(vm_name))
 print("Using VM '{}' ({} for Boot Sample".format(vm_name, vm))

 # Create Boot stub used for making requests
 global boot_svc
 boot_svc = Boot(stub_config)

 print('Example: Get current Boot configuration')
 boot_info = boot_svc.get(vm)
 print('vm.hardware.Boot.get({}) -> {}'.format(vm, pp(boot_info)))

 # Save current Boot info to verify that we have cleaned up properly
 global orig_boot_info
 orig_boot_info = boot_info

 print('Example: Update firmware to EFI for Boot configuration')
 update_spec = Boot.UpdateSpec(type=Boot.Type.EFI)
 print('vm.hardware.Boot.update({}, {})'.format(vm, update_spec))
 boot_svc.update(vm, update_spec)
 boot_info = boot_svc.get(vm)
 print('vm.hardware.Boot.get({}) -> {}'.format(vm, pp(boot_info)))

 print('Example: Update boot firmware to tell it to enter setup mode on ')
```
`next boot`)  
 update_spec = Boot.UpdateSpec(enter_setup_mode=True)  
 print('vm.hardware.Boot.update({}, {})'.format(vm, update_spec))  
 boot_svc.update(vm, update_spec)  
 boot_info = boot_svc.get(vm)  
 print('vm.hardware.Boot.get({}) -> {}'.format(vm, pp(boot_info)))

print('
# Example: Update boot firmware to introduce a delay in boot'  
' process and to reboot')  
print('# automatically after a failure to boot. '  
'(delay=10000 ms, retry=True,'  
print('# retry_delay=30000 ms')  
update_spec = Boot.UpdateSpec(delay=10000,  
 retry=True,  
 retry_delay=30000)  
print('vm.hardware.Boot.update({}, {})'.format(vm, update_spec))  
boot_svc.update(vm, update_spec)  
boot_info = boot_svc.get(vm)  
print('vm.hardware.Boot.get({}) -> {}'.format(vm, pp(boot_info)))

...  

### Operating System  

The guest operating system that you specify affects the supported devices and available number of virtual CPUs.

You specify the guest operating system by using the `setGuestOS(GuestOS guestOS)` method of the `VMTypes.CreateSpec` class. The `GuestOS` class defines the valid guest OS types that you can use to configure a virtual machine.

### CPU and Memory  

The `CreateSpec` class allows you to specify the CPU and memory configuration of a virtual machine.

To change the CPU and memory configuration settings, use the `CpuTypes.UpdateSpec` and `MemoryTypes.UpdateSpec` classes.

### CPU Configuration  

You can set the number of CPU cores in the virtual machine by using the `setCount` method of the `CpuTypes.UpdateSpec` class. The supported range of CPU cores depends on the guest operating system and virtual hardware version of the virtual machine. If you set `CpuTypes.Info.getHotAddEnabled()` and `CpuTypes.Info.getHotRemoveEnabled()` to `true`, you allow virtual processors to be added or removed from the virtual machine at runtime.
Memory Configuration

You can set the memory size of a virtual machine by using the `setSizeMiB` method of the `MemoryTypes.UpdateSpec` class. The supported range of memory sizes depends on the configured guest operating system and virtual hardware version of the virtual machine. If you set `MemoryTypes.UpdateSpec.setHotAddEnabled()` to true while the virtual machine is not powered on, you enable adding memory while the virtual machine is running.

Java Example of Configuring the CPU and Memory of a Virtual Machine

This example is based on the code in the `CpuConfiguration.java` and `MemoryConfiguration.java` sample files.

Note   For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...

private String vmName;
private String vmId;
private Memory memoryService;
private Cpu cpuService;
...

this.memoryService = vapiAuthHelper.getStubFactory().createStub(Memory.class,
 this.sessionStubConfig);

this.vmId = VmHelper.getVM(vapiAuthHelper.getStubFactory(), sessionStubConfig, vmName);

 // Update the memory size of the virtual machine
 MemoryTypes.UpdateSpec memoryUpdateSpec = new MemoryTypes.UpdateSpec.Builder().setSizeMiB(8 *
 1024l).build();
 memoryService.update(this.vmId, memoryUpdateSpec);
 memoryInfo = memoryService.get(this.vmId);

 // Enable adding memory while the virtual machine is running
 memoryUpdateSpec = new MemoryTypes.UpdateSpec.Builder().setHotAddEnabled(true).build();
 memoryService.update(this.vmId, memoryUpdateSpec);
 ...

this.cpuService = vapiAuthHelper.getStubFactory().createStub(Cpu.class,
 this.sessionStubConfig);

 // Get the current CPU information
 CpuTypes.Info cpuInfo = cpuService.get(this.vmId);

 // Update the number of CPU cores
 CpuTypes.UpdateSpec cpuUpdateSpec = new CpuTypes.UpdateSpec.Builder()
 .setCount(2l).build();
 cpuService.update(this.vmId, cpuUpdateSpec);
 cpuInfo = cpuService.get(this.vmId);
```
// Update the number of cores per socket in the virtual machine and
// allow CPU cores to be added to the virtual machine while it is running
cpuService.update(this.vmId, cpuUpdateSpec);

... Python Example of Configuring the CPU and Memory of a Virtual Machine

These examples are based on the code in the cpu.py and memory.py sample files.

**Note**  For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

The following example shows how you can update the CPU configuration of a virtual machine.

```python
... vm = None
vm_name = None
stub_config = None
cpu_svc = None
cleardata = False
orig_cpu_info = None

... server, username, password, cleardata, skip_verification, vm_name = \
 parse_cli_args_vm(testbed.config['VM_NAME_DEFAULT'])
stub_config = vapiconnect.connect(server,
 username,
 password,
 skip_verification)

... def run():
 global vm
 vm = get_vm(stub_config, vm_name)
 if not vm:
 exit('Sample requires an existing vm with name ({}). '
 'Please create the vm first.'\n .format(vm_name))
 print("Using VM '{}' ({}), for Cpu Sample".format(vm_name, vm))

 # Create CPU stub used for making requests
 global cpu_svc
 cpu_svc = Cpu(stub_config)

 # Get the current CPU configuration
 cpu_info = cpu_svc.get(vm)
 print('vm.hardware.Cpu.get({}) -> {}'.format(vm, pp(cpu_info)))

 # Save current CPU info to verify that we have cleaned up properly
 global orig_cpu_info
 orig_cpu_info = cpu_info
```
# Update the number of CPU cores of the virtual machine
update_spec = Cpu.UpdateSpec(count=2)
print('vm.hardware.Cpu.update({}, {})'.format(vm, update_spec))
cpu_svc.update(vm, update_spec)

# Get the new CPU configuration
cpu_info = cpu_svc.get(vm)
print('vm.hardware.Cpu.get({}) -> {}'.format(vm, pp(cpu_info)))

# Update the number of cores per socket and
# enable adding CPUs while the virtual machine is running
update_spec = Cpu.UpdateSpec(cores_per_socket=2, hot_add_enabled=True)
print('vm.hardware.Cpu.update({}, {})'.format(vm, update_spec))
cpu_svc.update(vm, update_spec)

The following example demonstrates how you can add memory to a running virtual machine.

vm = None
vm_name = None
stub_config = None
memory_svc = None
cleardata = False
orig_memory_info = None

server, username, password, cleardata, skip_verification, vm_name = \
    parse_cli_args_vm(testbed.config['VM_NAME_DEFAULT'])
stub_config = vapiconnect.connect(server,
    username,
    password,
    skip_verification)

global vm
vm = get_vm(stub_config, vm_name)
if not vm:
    exit('Sample requires an existing vm with name ({}).
        Please create the vm first.'.format(vm_name))
print("Using VM '{0}' ({1}) for Memory Sample".format(vm_name, vm))

# Create Memory stub used for making requests
global memory_svc
memory_svc = Memory(stub_config)

# Get the current Memory configuration
memory_info = memory_svc.get(vm)
print('vm.hardware.Memory.get({}) -> {}'.format(vm, pp(memory_info)))

# Update the memory size of the virtual machine
update_spec = Memory.UpdateSpec(size_mib=8 * 1024)
print('vm.hardware.Memory.update({}, {})'.format(vm, update_spec))
memory_svc.update(vm, update_spec)

# Get the new Memory configuration
memory_info = memory_svc.get(vm)
print('vm.hardware.Memory.get({}) -> {}'.format(vm, pp(memory_info)))

# Enable adding memory while the virtual machine is running
update_spec = Memory.UpdateSpec(hot_add_enabled=True)
print('vm.hardware.Memory.update({}, {})'.format(vm, update_spec))
memory_svc.update(vm, update_spec)

...
this.ethernetService = vapiAuthHelper.getStubFactory().createStub(Ethernet.class, this.sessionStubConfig);

// Get the virtual machine ID
this.vmId = VmHelper.getVM(vapiAuthHelper.getStubFactory(), sessionStubConfig, vmName);

// List all Ethernet adapters of the virtual machine
List<EthernetTypes.Summary> nicSummaries = this.ethernetService.list(this.vmId);
System.out.println("\n\n#### List of all Ethernet NICS on the VM:\n"
+ nicSummaries);

// Get info for each Ethernet adapter on the VM
System.out.println("\n\n#### Print info for each Ethernet NIC on the" + " vm.");
for (EthernetTypes.Summary ethSummary : nicSummaries) {
    EthernetTypes.Info ethInfo = this.ethernetService.get(vmId, ethSummary.getNic());
    System.out.println(ethInfo);
}

// Create Ethernet NIC by using STANDARD_PORTGROUP with default settings
String stdNetworkId = NetworkHelper.getStandardNetworkBacking(vapiAuthHelper.getStubFactory(), sessionStubConfig, this.datacenterName, this.stdPortgroupName);
String nicId = this.ethernetService.create(this.vmId, nicCreateSpec);
this.createdNics.add(nicId);
EthernetTypes.Info nicInfo = this.ethernetService.get(this.vmId, nicId);

// Update the Ethernet NIC with a different backing
this.ethernetService.update(this.vmId, lastNicId, nicUpdateSpec);
nicInfo = this.ethernetService.get(this.vmId, lastNicId);

// Update the Ethernet NIC configuration
nicUpdateSpec = new EthernetTypes.UpdateSpec.Builder() .setAllowGuestControl(false) .setStartConnected(false) .setWakeOnLanEnabled(false) .build();
this.ethernetService.update(this.vmId, lastNicId, nicUpdateSpec);
nicInfo = this.ethernetService.get(this.vmId, lastNicId);

// Powering on the VM to connect the virtual Ethernet adapter to its backing
this.powerService.start(this.vmId);
nicInfo = this.ethernetService.get(this.vmId, lastNicId);
```python
 // Connect Ethernet NIC after powering on the VM
 this.ethernetService.connect(this.vmId, lastNicId);
 nicInfo = this.ethernetService.get(this.vmId, lastNicId);

 // Disconnect Ethernet NIC after powering on VM
 this.ethernetService.disconnect(this.vmId, lastNicId);
 nicInfo = this.ethernetService.get(this.vmId, lastNicId);

 ...
```

**Python Example of Configuring the Virtual Machine Network**

This example is based on the code in the `ethernet.py` sample file.

**Note**  For a complete and up-to-date version of the sample code, see the *vSphere Automation SDK Python samples* at GitHub.

```python
 ...
 vm = None
 vm_name = None
 stub_config = None
 ethernet_svc = None
 cleardata = False
 nics_to_delete = []
 orig_nic_summaries = None
 ...

 server, username, password, cleardata, skip_verification, vm_name =
 parse_cli_args_vm(testbed.config['VM_NAME_DEFAULT'])
 stub_config = vapiconnect.connect(server,
 username,
 password,
 skip_verification)

 global vm
 vm = get_vm(stub_config, vm_name)
 if not vm:
 exit('Sample requires an existing vm with name ({}).'
 'Please create the vm first.'.format(vm_name))
 print("Using VM '{}' ({}) for Disk Sample".format(vm_name, vm))

 # Get standard portgroup to use as backing for sample
 standard_network = network_helper.get_standard_network_backing(
 stub_config,
 testbed.config['STDPORTGROUP_NAME'],
 testbed.config['VM_DATACENTER_NAME'])

 # Create Ethernet stub used for making requests
 global ethernet_svc
 ethernet_svc = Ethernet(stub_config)
 vm_power_svc = Power(stub_config)
 nic_summaries = ethernet_svc.list(vm=vm)
```
# Save current list of Ethernet adapters to verify that we have cleaned up properly
global orig_nic_summaries
orig_nic_summaries = nic_summaries

global nics_to_delete

# Create Ethernet Nic using STANDARD_PORTGROUP with the default settings
nic_create_spec = Ethernet.CreateSpec(
    backing=Ethernet.BackingSpec(
        type=Ethernet.BackingType.STANDARD_PORTGROUP,
        network=standard_network))
nic = ethernet_svc.create(vm, nic_create_spec)
nics_to_delete.append(nic)
nic_info = ethernet_svc.get(vm, nic)

# Create Ethernet Nic by using STANDARD_PORTGROUP
nic_create_spec = Ethernet.CreateSpec(
    start_connected=True,
    allow_guest_control=True,
    mac_type=Ethernet.MacAddressType.MANUAL,
    mac_address='01:23:45:67:89:10',
    wake_on_lan_enabled=True,
    backing=Ethernet.BackingSpec(
        type=Ethernet.BackingType.STANDARD_PORTGROUP,
        network=standard_network))
nic = ethernet_svc.create(vm, nic_create_spec)
nics_to_delete.append(nic)
nic_info = ethernet_svc.get(vm, nic)

# Update the Ethernet NIC with a different backing
nic_update_spec = Ethernet.UpdateSpec(
    backing=Ethernet.BackingSpec(
        type=Ethernet.BackingType.STANDARD_PORTGROUP,
        network=standard_network))
ethernet_svc.update(vm, nic, nic_update_spec)
nic_info = ethernet_svc.get(vm, nic)

# Update the Ethernet NIC configuration
nic_update_spec = Ethernet.UpdateSpec(
    wake_on_lan_enabled=False,
    mac_type=Ethernet.MacAddressType.GENERATED,
    start_connected=False,
    allow_guest_control=False)
ethernet_svc.update(vm, nic, nic_update_spec)
nic_info = ethernet_svc.get(vm, nic)

# Powering on the VM to connect the virtual Ethernet adapter to its backing
vm_power_svc.start(vm)
nic_info = ethernet_svc.get(vm, nic)

# Connect the Ethernet NIC after powering on the VM
ethernet_svc.connect(vm, nic)
Performing Virtual Machine Power Operations

You can start, stop, reboot, and suspend virtual machines by using the methods of the Power class.

A virtual machine can have one of the following power states:

- **PowerTypes.State.POWERED_ON** - Indicates that the virtual machine is running. If a guest operating system is not currently installed, you can perform the guest OS installation in the same way as for a physical machine.

- **PowerTypes.State.POWERED_OFF** - Indicates that the virtual machine is not running. You can still update the software on the physical disk of the virtual machine, which is impossible for physical machines.

- **PowerTypes.State.SUSPENDED** - Indicates that the virtual machine is paused and can be resumed. This state is the same as when a physical machine is in standby or hibernate state.

To perform a power operation on a virtual machine, you can use one of the methods of the Power class. Before you call one of the methods to change the power state of a virtual machine, you must first check the current state of the virtual machine by using the `Power.get` method. Pass as argument the virtual machine identifier.

Following is a list if the power operations:

- **Power.start** - Powers on a powered off or suspended virtual machine. The method takes as argument the virtual machine identifier.

- **Power.stop** - Powers off a powered on or suspended virtual machine. The method takes as argument the virtual machine identifier.

- **Power.suspend** - Pauses all virtual machine activity for a powered on virtual machine. The method takes as argument the virtual machine identifier.

- **Power.reset** - Shuts down and restarts the guest operating system without powering off the virtual machine. Although this method functions as a `stop` method that is followed by a `start` method, the two operations are atomic with respect to other clients, meaning that other power operations cannot be performed until the `reset` method completes.
Java Example of Powering On a Virtual Machine

This example is based on the code in the EthernetConfiguration.java sample file.

Note  For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Java samples at GitHub.

```java
...
private String vmName;
private String vmId;
private Power powerService;
...
this.powerService = vapiAuthHelper.getStubFactory().createStub(
 Power.class, this.sessionStubConfig);
this.vmId = VmHelper.getVM(vapiAuthHelper.getStubFactory(),
 this.sessionStubConfig,
 vmName);
this.powerService.start(this.vmId);
...
```

Python Example of Powering On a Virtual Machine

This example is based on the code in the ethernet.py sample file.

Note  For a complete and up-to-date version of the sample code, see the vSphere Automation SDK Python samples at GitHub.

```python
...
vm = None
vm_name = None
stub_config = None

server, username, password, cleardata, skip_verification, vm_name = \
 parse_cli_args_vm(testbed.config['VM_NAME_DEFAULT'])
stub_config = vapiconnect.connect(server, username, password, skip_verification)

Get the virtual machine ID
vm = get_vm(stub_config, vm_name)

Create the Power stub for running power operations on virtual machines
vm_power_svc = Power(stub_config)
vm_power_svc.start(vm)
```
.NET Example of Powering On a Virtual Machine

This example is based on the code in the EthernetConfiguration.cs sample file.

**Note** For a complete and up-to-date version of the sample code, see the vSphere Automation SDK .NET samples at GitHub.

```csharp
private string vmId;
private Power powerService;
public string VmName { get; set; }

... this.powerService = VapiAuthHelper.StubFactory.CreateStub<Power>(
 SessionStubConfiguration);

...

t his.vmId = VmHelper.GetVm(VapiAuthHelper.StubFactory,
 SessionStubConfiguration, VmName);

...

t his.powerService.Start(this.vmId);
...
Managing Certificates

You can use the vSphere Automation API to manage the life cycle of certificates.

The API provides operations for generating a certificate signing request (CSR), retrieving, renewing, or replacing TLS certificates, and creating, retrieving, or deleting trusted root certificate chains. The TLS certificates and trusted root chain certificates are maintained in the VMware Endpoint Certificate Store (VECS) and provide the means for services inside vCenter Server to communicate in a secure manner.

Table 11-1. User Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate a CSR</td>
<td>You can generate a CSR by providing a valid specification. If the operation is successful, you receive a CSR in PEM format.</td>
</tr>
<tr>
<td>Get TLS certificates</td>
<td>You can retrieve existing TLS certificates and additional certificate information such as serial number, issuer, validity, thumbprint, and so on.</td>
</tr>
<tr>
<td>Replace TLS certificates</td>
<td>You can replace the existing TLS certificate with another certificate that you specify.</td>
</tr>
<tr>
<td>Renew TLS certificates</td>
<td>You can renew the validity of an existing TLS certificate for a specified period. The duration should be less than or equal to 730 days. If you do not specify the duration, the default value of 730 days is applied.</td>
</tr>
<tr>
<td>Create a trusted root certificate chain</td>
<td>You can create a trusted root certificate chain by providing a valid specification. If the operation is successful, you receive a unique identifier of the last certificate present in the root chain.</td>
</tr>
<tr>
<td>List trusted root certificates</td>
<td>You can retrieve the identifiers of all certificates present in the trusted root chain.</td>
</tr>
<tr>
<td>Get trusted root certificate information</td>
<td>You can retrieve the PEM certificate by providing the identifier of the certificate. The certificate identifier can be retrieved by using the List trusted root certificates operation.</td>
</tr>
<tr>
<td>Delete a trusted root certificate</td>
<td>You can delete a specific certificate by providing the identifier. The certificate identifier can be retrieved by using the List trusted root certificates operation.</td>
</tr>
</tbody>
</table>

This chapter includes the following topics:

- HTTP Requests for Certificate Management
- cURL Examples of Certificate Management Operations
HTTP Requests for Certificate Management

You can use HTTP requests to generate a CSR, retrieve, renew, or replace TLS certificates, and retrieve, create, or delete trusted root certificate chains.

HTTP Requests

The following HTTP requests show the syntax that you can use to perform the available user operations.

Note: Before you send requests, you must authenticate with administrator credentials.

- Generate a CSR
  ```
  POST https://<server>/rest/vcenter/certificate-management/vcenter/tls-csr
  ```

- Get TLS certificates
  ```
  GET https://<server>/rest/vcenter/certificate-management/vcenter/tls
  ```

- Replace TLS certificates
  ```
  PUT https://<server>/rest/vcenter/certificate-management/vcenter/tls
  ```

- Renew TLS certificates
  ```
  POST https://<server>/rest/vcenter/certificate-management/vcenter/tls?action=renew
  ```

- Create a trusted root certificate chain
  ```
  POST https://<server>/rest/vcenter/certificate-management/vcenter/trusted-root-chains
  ```

- List trusted root certificates
  ```
  GET https://<server>/rest/vcenter/certificate-management/vcenter/trusted-root-chains
  ```

- Get trusted root certificate information
  ```
  GET https://<server>/rest/vcenter/certificate-management/vcenter/trusted-root-chains/{chain}
  ```

- Delete a trusted root certificate
  ```
  DELETE https://<server>/rest/vcenter/certificate-management/vcenter/trusted-root-chains/{chain}
  ```

For information about the content and syntax of the HTTP request body, see the API Reference documentation.
HTTP Status Codes

Table 11-2 lists the status codes that you can receive when you send HTTP requests.

Table 11-2. HTTP Status Codes

<table>
<thead>
<tr>
<th>HTTP Status Code</th>
<th>Description</th>
<th>Operations that Return the Status Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>The operation is successful.</td>
<td>All operations. You can check the returned data in the results data structure.</td>
</tr>
<tr>
<td>400</td>
<td>The operation is unsuccessful.</td>
<td>Generate a CSR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Get TLS certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace TLS certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renew TLS certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Create a trusted root certificate chain</td>
</tr>
<tr>
<td>403</td>
<td>There is an authorization issue.</td>
<td>Create a trusted root certificate chain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List trusted root certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Get trusted root certificate information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delete a trusted root certificate</td>
</tr>
<tr>
<td>404</td>
<td>The object you are trying to perform an operation on is missing.</td>
<td>Get TLS certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace TLS certificates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Get trusted root certificate information</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delete a trusted root certificate</td>
</tr>
</tbody>
</table>

cURL Examples of Certificate Management Operations

The following cURL command examples show the syntax for operations that you can use to manage TLS certificates and trusted root certificates.

Prerequisites

- Verify that the certificate management service is running on your vCenter Server instance.
- Verify that you have the session ID that is required to invoke the API operations. You can obtain the session ID by running the following command.

```bash
curl -u 'administrator@vsphere.local:<password>' -X POST -k https://<server>:/443/rest/com/vmware/cis/session
```
Example: Renew a Certificate

This example renews an existing TLS certificate issued by the VMware Certificate Authority (VMCA).

Note The duration of the renewed certificate is explicitly set to 730 days in the input spec, which is the default and maximum value. If you do not specify the duration in the input spec, the default value of 730 days is applied.

```bash
curl --insecure -H 'Content-Type:application/json' --request POST --data-ascii '{"duration":"730"}' --url https://<server>/rest/vcenter/certificate-management/vcenter/tls/?action=renew --header 'vmware-api-session-id:8ab92796a606801c233a2189a1e8f823'
```

Example: Generate a CSR

This example generates a CSR and private key on the vCenter Server instance. The private key remains on the machine.

You can perform this operation as part of a use case scenario in which you want to replace a VMCA-issued TLS certificate with a TLS certificate issued by a custom Certificate Authority (CA). You must use the CSR and obtain a certificate from the external CA to replace the existing certificate. For details on the replacement operation, see Example: Replace a Certificate.

```bash
curl --insecure -H 'Content-Type:application/json' --request POST --data-ascii '{"spec": {"key_size": "2048","common_name": "sc-rdops-vm05-dhcp-154-50.eng.vmware.com","country": "US","locality": "PA","state_or_province": "CA","organization": "VMware","organization_unit": "SSO","email_address": "abc@xyz.com" } }' --url https://<server>/rest/vcenter/certificate-management/vcenter/tls-csr --header 'vmware-api-session-id:f20b7b1bea84f48cd460ead3da8f7fdd'
```

Example: Replace a Certificate

This example replaces an existing TLS certificate with another certificate obtained from a CSR that you generated. You must provide the obtained certificate in PEM format in the input spec.

Note You must generate a CSR before you can replace a certificate.

You can perform this operation as part of a use case scenario in which you want to replace a VMCA-issued TLS certificate with a TLS certificate issued by a custom Certificate Authority (CA). You must use the CSR and obtain a certificate from the external CA to replace the existing certificate. For details on the CSR generation operation, see Example: Generate a CSR.

```bash
curl --insecure -H 'Content-Type:application/json' --request PUT --data-ascii '{"spec":{"cert": "-----BEGIN CERTIFICATE-----
MIID9TCCAtz2gAwIBAgIBADANBgkqhkiG9w0BAQsFAD8jMQswCQYDVQQGEwJJTjELMAkGA1UECAwCS0ExDzANBgNVBAMMKHNjLXJkb3BzLXZtd2FyZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCrrU33wRIu1I1WUX9RK4..-----END CERTIFICATE-----"}}' --url https://<server>/rest/vcenter/certificate-management/vcenter/tls/certificate
```
Example: Create and Add Trusted Root Certificates

This example creates two certificate chains and adds them to the trusted root chain.

curl --insecure -H 'Content-Type:application/json' --request POST --data-ascii '{"spec": {"cert_chain": ["-----BEGIN CERTIFICATE-----
MIIDwjCCAqqgAwIBAgIJAI1OflMjc0LfMA0GCSqGSIb3DQEBCwUAMHYxCzAJBgNV
BAYTAklOMQswCQYDVQQIDAJLQTEMMAoGA1UEBwwDQkxSMQ8wDQYDVQQKDAZWTXdh
cmUxDDAKBgNVBAsMA1NTTzEMMAoGA1UEAwwDQ0ExMR8wHQYJKoZIhvcN
AQkBFhBzaWduMUB2bXdhcmUuY29tMB4XDTE5MDEwMjA2MTIyMloXDTI4MTIzMDA2MTIyMlow
djELMAkGA1UdDgQWBBSv6kwhVWkFQ/se4wRz3PayMJTjgzAfBgNVHSMEGDAWgBSv6kwhVWkFQ/se4wRz3PayMJTj
gzAPBgNVHRMBA
f8EBTADAQH/MA0GCSqGSIb3DQEBCwUAA4IBAQC2yEXM2fTCYRvh
oD40MrDLK/g
+mKSixvsXteBga47hi8lxnt6T6XGCg44ZMT/HTSzkw2alYG5EhXKt1n/FzeFNFynHm524D6lrgc
+sp/7ythbt观摩ewe278hi9pAPHi4q9bA9HR/aqWY/6s88u9B4d4i/n/e/FzBGRjgxtvMqN5T6VrBq7xTvV3vPqneoisv36K6Ffu9MnAmhHlIZ3y8s
X4bHo1al3q/n/omMC74/quad88kGgup31nebwpwmmX15105Cex3993jpswpqo4alht0wTTL5YnU3z/n/s59j1ch/0p9WtKeE5wSVU6mMnEx
97qov/kRMRBCq/pa9qHy31nWfLW17TM9GC7/nordfC3h-------END CERTIFICATE------", "-----BEGIN CERTIFICATE-----
MIID5jCCAs6gAwIBAgIBCDANBgkqhkiG9w0BAQsFADB2MQswCQYDVQQGEwJJTjEL
MAkGA1UECAwCS0ExDDABgNVBAcMA0JMUjEPMA0GA1UECgwGVk13YXJlMQwwCgYD
VQQLDANTU08xDDAKBgNVBAMMA0NBMTEfMB0GCSqGSIb3DQEJARYQc2lnbjJAdm13
YXJlLmNvbTCCASiwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAL3s5ycFPQmgffQmZKaE
M/0ymZgh/Kz3txTmWpAiEPGpGdrulDfwub+DEB0X9fHsfWvcj481d06N4g3b5onnejnaMoBeIKd9eWe9fm2/12YfWkkHhIlWioHdM5B7T9Yi9VALEMBK6L/9nc2Fa0U2veF/vQvGsu/DuKw5rs3gB2IRFcQ7BpZTq3kgAIHMMVAVafNP5W12r19Y5v9B8B8yB7MBD/nzm/2Z6c+as5YPfI0F6thCF
+92s0JmowB90mn24Q3n6M1mb4cY+5m7QrOuBY41sf/kNtB1VDMS/0rZ5QkPwcp/E8AexyoxRaxz46awcF3NaasiVBU/iaDc635MsY
+z6c5/n8eBQvAEOAIiJCDQfTaBmgBnHRMEBTAQf8/MA54Aii0DW0EaW1j8a5jS3gblghgkBn/hvQAvCQExEHYDfT3B1811NCTBH2Z51cmF
0ZwQo2Y2vgydMlwhGdHwQH30QvUkTuYF94M71L0G50F5/M8GA1li0uWQyMbaDF/qTCPfQvQd
+x7jBHPc9/n9wL00DhMgGgC5gB13dBQCEwUA4IAQBMKoy76M7y1dY/1M3M/024aT9u82/1ERXRkR6DS5X9Y9gk0sp/95Umh1Gf
xeAze47kJj7G7NTLogYFQKX9p9yIrPiyKjRP/n08zo8f0aY/9He3n2pHZtoYKgZICBNrflCFwG/solcxnkokotIsU561MPTX5McyF
VMware vSphere Automation SDKs Programming Guide

VMware, Inc. 150
Example: List the Trusted Root Certificates

This example lists the IDs of all certificates present in the trusted root chain.

```
curl --insecure --request GET --url https://<server>/rest/vcenter/certificate-management/vcenter/trusted-root-chains/ --header 'vmware-api-session-id:e594038d4c1023afe86b2c14b0b741f0'
```

Example: Get Trusted Root Certificate Information

This example retrieves information about a trusted root certificate with ID AFEA4C2155690543FB1EE30473DCF6B23094E383.

```
curl --insecure --request GET --url https://<server>/rest/vcenter/certificate-management/vcenter/trusted-root-chains/AFEA4C2155690543FB1EE30473DCF6B23094E383 --header 'vmware-api-session-id: e594038d4c1023afe86b2c14b0b741f0'
```

Example: Delete a Trusted Root Certificate

This example deletes the trusted root certificate with ID AFEA4C2155690543FB1EE30473DCF6B23094E383.

```
curl --insecure --request DELETE --url https://<server>/rest/vcenter/certificate-management/vcenter/trusted-root-chains/AFEA4C2155690543FB1EE30473DCF6B23094E383 --header 'vmware-api-session-id: e594038d4c1023afe86b2c14b0b741f0'
```